Conference Paper
BibTex RIS Cite

İki Değişkenli Geometrik Dağılım ve Genelleştirilmesi, Bağımlılık Ölçüleri ve Dağılım Özellikleri

Year 2011, Volume: 8 Issue: 2, 45 - 54, 17.10.2011

Abstract

Bu çalışmada, Marshall ve Olkin’in iki değişkenli geometrik dağılımına ilişkin dağılım özellikleri araştırılmış ve uyumluluk ölçüsü Kendall Tau elde edilmiştir. Aynı zamanda, iki değişkenli geometrik dağılımın En Çok Olabilirlik tahmin edicisi elde edilmiş ve çok değişkenli duruma genelleştirilmesi verilmiştir.

References

  • Asha, G., Sankaran, P. G., Unnikrishnan N. N., 2003. Probability Models With Constant Total Failure Rate. Communications in Statistics-Theory and Methods, 32(6), 1089-1099.
  • Azlarov, T. A., Volodin, N. A., 1982. On The Discrete Analog Of Marshall-Olkin's Distribution. Stability problems for Stochastic Models. Lecture Notes in Mathematics, 982, Spinger, Berlin-New York, 17-23.
  • Cox, D. R., 1972. Regression Models And Life-Tables. J. Roy. Statist. Soc. Ser. B, 34, 187-220.
  • Dhar, S. K., 1998a. Data Analysis With Discrete Analogue Of Freund’s Model. J. Appl. Statist. Sci., 7, 169-183.
  • Dhar, S. K., 1998b. Modeling With A Bivariate Geometric Distribution. Advances On Methodological And Applied Aspects Of Probability And Statistics. Edited by N. Balakrishnan, Gordon and Breach Science Publishers, IISA 98 McMaster Conference Proceedings, 1, 101-109.
  • Dhar, S. K., Balaji, S., 2006. On The Characterization Of A Bivariate Geometric Distribution. Communications in Statistics-Theory and Methods, 35, 759-765.
  • Hawkes, A. G., 1972. A Bivariate Exponential Distribution With Applications To Reliability. Journal of the Royal Statistical Society, Ser. B, 34, 129-131.
  • Krishna, H., Pundir, S. P., 2009. A Bivariate Geometric Distribution With Applications To Reliability. Communications in Statistics-Theory and Methods, 38, 1079-1093.
  • Marshall, A. W., Olkin, I., 1985. A Family Of Bivariate Distributions Generated By The Bernoulli Distribution. J. Am. Stat. Assoc., 80, 332-338.
  • Mitov, K., Nadarajah, S., 2005. Limit Distributions For The Bivariate Geometric Maxima. Extremes, 8, 357-370.
  • Nadarajah, S., 2008. Marshall And Olkin's Distributions. Acta. Appl. Math., 103, 87-100.
  • Nair, K. R. M., Nair, N. U., 1988. On Characterizing A Bivariate Geometric Distribution. Journal of the Indian Statistical Association, 26, 45-49.
  • Nelsen, B. R., 1999. An Introduction To Copulas. Springer, New york.
  • Phatak, A. G., Sreehari, M., 1981. Some Characterizations of A Bivariate Geometric Distribution. J. Ind. Statist. Assoc., 19, 141-146.
  • Roy, D., 1993. Reliability Measures In The Discrete Bivariate Set-Up And Related Characterization Results For A Bivariate Geometric Distribution. Journal of Multivariate Analysis, 46, 362-373.

Bivariate Geometric Distribution and Its Generalizations, Dependence Measures and the Distribution Properties

Year 2011, Volume: 8 Issue: 2, 45 - 54, 17.10.2011

Abstract

In this study, the distribution properties of Marshall and Olkin’s bivariate geometric distribution are studied and the concordance measure Kendall’s Tau is obtained. Also, Maximum Likelihood estimators of the bivariate geometric distribution are obtained and generalization to multivariate case is given.

References

  • Asha, G., Sankaran, P. G., Unnikrishnan N. N., 2003. Probability Models With Constant Total Failure Rate. Communications in Statistics-Theory and Methods, 32(6), 1089-1099.
  • Azlarov, T. A., Volodin, N. A., 1982. On The Discrete Analog Of Marshall-Olkin's Distribution. Stability problems for Stochastic Models. Lecture Notes in Mathematics, 982, Spinger, Berlin-New York, 17-23.
  • Cox, D. R., 1972. Regression Models And Life-Tables. J. Roy. Statist. Soc. Ser. B, 34, 187-220.
  • Dhar, S. K., 1998a. Data Analysis With Discrete Analogue Of Freund’s Model. J. Appl. Statist. Sci., 7, 169-183.
  • Dhar, S. K., 1998b. Modeling With A Bivariate Geometric Distribution. Advances On Methodological And Applied Aspects Of Probability And Statistics. Edited by N. Balakrishnan, Gordon and Breach Science Publishers, IISA 98 McMaster Conference Proceedings, 1, 101-109.
  • Dhar, S. K., Balaji, S., 2006. On The Characterization Of A Bivariate Geometric Distribution. Communications in Statistics-Theory and Methods, 35, 759-765.
  • Hawkes, A. G., 1972. A Bivariate Exponential Distribution With Applications To Reliability. Journal of the Royal Statistical Society, Ser. B, 34, 129-131.
  • Krishna, H., Pundir, S. P., 2009. A Bivariate Geometric Distribution With Applications To Reliability. Communications in Statistics-Theory and Methods, 38, 1079-1093.
  • Marshall, A. W., Olkin, I., 1985. A Family Of Bivariate Distributions Generated By The Bernoulli Distribution. J. Am. Stat. Assoc., 80, 332-338.
  • Mitov, K., Nadarajah, S., 2005. Limit Distributions For The Bivariate Geometric Maxima. Extremes, 8, 357-370.
  • Nadarajah, S., 2008. Marshall And Olkin's Distributions. Acta. Appl. Math., 103, 87-100.
  • Nair, K. R. M., Nair, N. U., 1988. On Characterizing A Bivariate Geometric Distribution. Journal of the Indian Statistical Association, 26, 45-49.
  • Nelsen, B. R., 1999. An Introduction To Copulas. Springer, New york.
  • Phatak, A. G., Sreehari, M., 1981. Some Characterizations of A Bivariate Geometric Distribution. J. Ind. Statist. Assoc., 19, 141-146.
  • Roy, D., 1993. Reliability Measures In The Discrete Bivariate Set-Up And Related Characterization Results For A Bivariate Geometric Distribution. Journal of Multivariate Analysis, 46, 362-373.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Statistical Analysis
Journal Section Research Articles
Authors

Özge Elmastaş Gültekin

İsmihan Bayramoğlu

Publication Date October 17, 2011
Published in Issue Year 2011 Volume: 8 Issue: 2

Cite

APA Elmastaş Gültekin, Ö., & Bayramoğlu, İ. (2011). İki Değişkenli Geometrik Dağılım ve Genelleştirilmesi, Bağımlılık Ölçüleri ve Dağılım Özellikleri. İstatistik Araştırma Dergisi, 8(2), 45-54.