Faz Dizili Antenlerin Radar Kesit Alanı Modellemesine Genel Bakış ve Zorluklar
Year 2024,
, 86 - 91, 21.06.2024
Ömer Burak Güngördü
,
Ali Kara
,
Sinan Akşimşek
Abstract
Radar kesit alanı (RCS), modern hava silah sistemlerinin tasarımı ve performansında kritik bir faktördür. Bu sistemler, düşük profilleri, gelişmiş hüzme oluşturma ve açı ölçüm yetenekleri nedeniyle faz dizili antenleri yoğun bir şekilde kullanmaktadır. Faz dizili antenlerin platform RCS'si üzerindeki etkisi önemli olabilir. Faz dizili antenlerin RCS'si ele alınırken hem yapısal hem de anten modlu saçılma ile başa çıkmak gerekir. Her bir bileşen, hesaplama için benzersiz zorluklar sunar ve özel azaltma teknikleri gerektirir. Bu kısa inceleme, anten ve yapısal mod RCS'si hesaplamasına yönelik çeşitli mevcut yöntemlere değinmekte ve bu yöntemlerin uygulamalarına dair bilgiler sunmaktadır. Büyük dizi antenlerinin RCS simülasyonu, yüksek hesaplama kaynaklarına olan talepler nedeniyle önemli zorluklar sunar. Bu inceleme, RCS modellemesinde simülasyon sürelerini ve bellek kullanımını azaltmaya yönelik mevcut çözümleri vurgulamaktadır. Ancak, büyük ölçekli dizi antenlerinin daha verimli ve doğru bir şekilde simüle edilmesi için daha fazla ilerlemeye ihtiyaç vardır.
References
- [1] Knott, E. F., Schaeffer, J. F., & Tulley, M. T. (2004). Radar cross section. SciTech Publishing.
- [2] Vasanelli, C., Bogelsack, F., & Waldschmidt, C. (2018). Reducing the radar cross section of microstrip arrays using AMC structures for the vehicle integration of automotive radars. IEEE Transactions on Antennas and Propagation, 66(3), 1456–1464. https://doi.org/10.1109/tap.2018.2794410
- [3] Noorbakhsh, B., Abdolali, A., & Janforooz, M. (2021). In‐band radar cross‐section reduction of the slot array antennas by RAM‐based frequency selective surfaces. IET Microwaves, Antennas & Propagation, 15(5), 457–463. https://doi.org/10.1049/mia2.12070
- [4] Wang, X., Tong, X., Wang, J., A, S., Wang, J., & Han, X. (2024). A polarization-converting metasurface for reducing radar cross sections and enhancing radiation performance of circularly polarized array antennas. Optics Communications, 556, 130269. https://doi.org/10.1016/j.optcom.2024.130269.
- [5] Lu, Y., Su, J., Liu, J., Guo, Q., Yin, H., Li, Z., & Song, J. (2019). Ultrawideband monostatic and bistatic RCS reductions for both copolarization and cross polarization based on polarization conversion and destructive interference. IEEE Transactions on Antennas and Propagation, 67(7), 4936–4941. https://doi.org/10.1109/tap.2019.2911185.
- [6] Li, K., Liu, Y., Jia, Y., & Guo, Y. J. (2017). A circularly polarized High-Gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces. IEEE Transactions on Antennas and Propagation, 65(8), 4288–4292. https://doi.org/10.1109/tap.2017.2710231E.
- [7] Ji, L., Hong, X., Yang, R., Liu, Q., & Zhang, W. (2024). A low radar cross section antenna array based on a liquid metal metasurface. IET Microwaves, Antennas & Propagation, 18(3), 173–180. https://doi.org/10.1049/mia2.12452
- [8] Chen, W., Balanis, C. A., & Birtcher, C. R. (2015). Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Transactions on Antennas and Propagation, 63(6), 2636–2645. https://doi.org/10.1109/tap.2015.2414440
- [9] Gou, Y., Chen, Y., & Yang, S. (2022). Radar cross section reduction of wideband Vivaldi antenna arrays with Array-Level scattering cancellation. IEEE Transactions on Antennas and Propagation, 70(8), 6740–6750. https://doi.org/10.1109/tap.2022.3162082
- [10] Zhao, C., Jiang, W., Ge, J., Xi, Y., Hong, T., & Gong, S. (2021). A low‐radar cross section Vivaldi antenna array based on reflection cancelation. International Journal of RF and Microwave Computer-aided Engineering, 32(3). https://doi.org/10.1002/mmce.23016
- [11] Fang, S., Qu, S., Yang, S., & Hu, J. (2023). Low-Scattering X-Band Planar Phased Vivaldi Array antenna. IEEE Transactions on Antennas and Propagation, 71(3), 2808–2813. https://doi.org/10.1109/tap.2023.3239137
- [12] Ruck, G. T., Barrick, D. E., & Stuart, W. (2002). Radar Cross Section Handbook. Peninsula Publishing.
- [13] Liu, Y., Fu, D., & Gong, S. (2003). A Novel Model for Analyzing the Radar Cross Section of Microstrip Antenna. Journal of Electromagnetic Waves and Applications, 17(9), 1301–1310. https://doi.org/10.1163/156939303322520043
- [14] Appel-Hansen, J. (1979). Accurate determination of gain and radiation patterns by radar cross-section measurements. IRE Transactions on Antennas and Propagation/I.R.E. Transactions on Antennas and Propagation, 27(5), 640–646. https://doi.org/10.1109/tap.1979.1142156
- [15] Liu, Y., & You, L. (2011b). Research on the estimation and reduction measures of antenna mode RCS of airborne phased array. In 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. https://doi.org/10.1109/mape.2011.6156207.
- [16] J Gan, L., Jiang, W., Chen, Q., Li, X., Zhou, Z., & Gong, S. (2021). Method to estimate antenna mode Radar cross section of Large-Scale array antennas. IEEE Transactions on Antennas and Propagation, 69(10), 7029–7034. https://doi.org/10.1109/tap.2021.3075536
- [17] Pozar, D. (1994). The active element pattern. IEEE Transactions on Antennas and Propagation, 42(8), 1176–1178. https://doi.org/10.1109/8.310010
- [18] Singh, A., Sasidharan, D. K., & Singh, H. (2020). Analytical estimation of radiation mode radar cross section (RCS) of phased arrays. IEEE Transactions on Vehicular Technology, 69(6), 6415–6421. https://doi.org/10.1109/tvt.
A Complementary Overview and Challenges in Radar Cross Section Modeling of Phased Array Antennas
Year 2024,
, 86 - 91, 21.06.2024
Ömer Burak Güngördü
,
Ali Kara
,
Sinan Akşimşek
Abstract
The radar cross-section (RCS) is a critical factor in the design and performance of modern airborne weapon systems. These systems utilize phased array antennas due to their low profile, advanced beamforming, and angle measurement capabilities. The effect of phased array antennas on platform RCS can be crucial. Addressing the RCS of phased array antennas involves solving both structural and antenna mode scattering. Each component presents different challenges for computation and requires specific RCS reduction techniques. This short review delves into various existing methods for computing antenna and structural mode RCS and offers insights into their application. Simulating the RCS of large array antennas presents significant challenges due to the high demands on computing resources. Additionally, this review highlights existing solutions aimed at reducing the simulation times and memory usage in RCS modeling while maintaining accurate results. However, further advancements are necessary to simulate large scale array antennas more efficiently and accurately.
Ethical Statement
In the studies carried out within the scope of this article, the rules of research and publication ethics were followed.
Supporting Institution
TUSAŞ
References
- [1] Knott, E. F., Schaeffer, J. F., & Tulley, M. T. (2004). Radar cross section. SciTech Publishing.
- [2] Vasanelli, C., Bogelsack, F., & Waldschmidt, C. (2018). Reducing the radar cross section of microstrip arrays using AMC structures for the vehicle integration of automotive radars. IEEE Transactions on Antennas and Propagation, 66(3), 1456–1464. https://doi.org/10.1109/tap.2018.2794410
- [3] Noorbakhsh, B., Abdolali, A., & Janforooz, M. (2021). In‐band radar cross‐section reduction of the slot array antennas by RAM‐based frequency selective surfaces. IET Microwaves, Antennas & Propagation, 15(5), 457–463. https://doi.org/10.1049/mia2.12070
- [4] Wang, X., Tong, X., Wang, J., A, S., Wang, J., & Han, X. (2024). A polarization-converting metasurface for reducing radar cross sections and enhancing radiation performance of circularly polarized array antennas. Optics Communications, 556, 130269. https://doi.org/10.1016/j.optcom.2024.130269.
- [5] Lu, Y., Su, J., Liu, J., Guo, Q., Yin, H., Li, Z., & Song, J. (2019). Ultrawideband monostatic and bistatic RCS reductions for both copolarization and cross polarization based on polarization conversion and destructive interference. IEEE Transactions on Antennas and Propagation, 67(7), 4936–4941. https://doi.org/10.1109/tap.2019.2911185.
- [6] Li, K., Liu, Y., Jia, Y., & Guo, Y. J. (2017). A circularly polarized High-Gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces. IEEE Transactions on Antennas and Propagation, 65(8), 4288–4292. https://doi.org/10.1109/tap.2017.2710231E.
- [7] Ji, L., Hong, X., Yang, R., Liu, Q., & Zhang, W. (2024). A low radar cross section antenna array based on a liquid metal metasurface. IET Microwaves, Antennas & Propagation, 18(3), 173–180. https://doi.org/10.1049/mia2.12452
- [8] Chen, W., Balanis, C. A., & Birtcher, C. R. (2015). Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Transactions on Antennas and Propagation, 63(6), 2636–2645. https://doi.org/10.1109/tap.2015.2414440
- [9] Gou, Y., Chen, Y., & Yang, S. (2022). Radar cross section reduction of wideband Vivaldi antenna arrays with Array-Level scattering cancellation. IEEE Transactions on Antennas and Propagation, 70(8), 6740–6750. https://doi.org/10.1109/tap.2022.3162082
- [10] Zhao, C., Jiang, W., Ge, J., Xi, Y., Hong, T., & Gong, S. (2021). A low‐radar cross section Vivaldi antenna array based on reflection cancelation. International Journal of RF and Microwave Computer-aided Engineering, 32(3). https://doi.org/10.1002/mmce.23016
- [11] Fang, S., Qu, S., Yang, S., & Hu, J. (2023). Low-Scattering X-Band Planar Phased Vivaldi Array antenna. IEEE Transactions on Antennas and Propagation, 71(3), 2808–2813. https://doi.org/10.1109/tap.2023.3239137
- [12] Ruck, G. T., Barrick, D. E., & Stuart, W. (2002). Radar Cross Section Handbook. Peninsula Publishing.
- [13] Liu, Y., Fu, D., & Gong, S. (2003). A Novel Model for Analyzing the Radar Cross Section of Microstrip Antenna. Journal of Electromagnetic Waves and Applications, 17(9), 1301–1310. https://doi.org/10.1163/156939303322520043
- [14] Appel-Hansen, J. (1979). Accurate determination of gain and radiation patterns by radar cross-section measurements. IRE Transactions on Antennas and Propagation/I.R.E. Transactions on Antennas and Propagation, 27(5), 640–646. https://doi.org/10.1109/tap.1979.1142156
- [15] Liu, Y., & You, L. (2011b). Research on the estimation and reduction measures of antenna mode RCS of airborne phased array. In 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. https://doi.org/10.1109/mape.2011.6156207.
- [16] J Gan, L., Jiang, W., Chen, Q., Li, X., Zhou, Z., & Gong, S. (2021). Method to estimate antenna mode Radar cross section of Large-Scale array antennas. IEEE Transactions on Antennas and Propagation, 69(10), 7029–7034. https://doi.org/10.1109/tap.2021.3075536
- [17] Pozar, D. (1994). The active element pattern. IEEE Transactions on Antennas and Propagation, 42(8), 1176–1178. https://doi.org/10.1109/8.310010
- [18] Singh, A., Sasidharan, D. K., & Singh, H. (2020). Analytical estimation of radiation mode radar cross section (RCS) of phased arrays. IEEE Transactions on Vehicular Technology, 69(6), 6415–6421. https://doi.org/10.1109/tvt.