Research Article
BibTex RIS Cite

Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System

Year 2025, Volume: 6 Issue: 1, 11 - 30
https://doi.org/10.53525/jster.1635055

Abstract

The main objective of this numerical study is to investigate the effect of triangle fin inclination angles (IAs) on the melting process in a Latent Heat Thermal Energy Storage (LHTES) system designed as a vertical rectangular cavity with and without metal foam (MF). In the cases, paraffin wax phase change material (PCM) filled the entire domain, and the Brinkman-Darcy-Forchheimer model, assuming local thermal equilibrium (LTE), and the enthalpy-porosity method were employed to simulate the melting process. In total, 14 different cases were analyzed and the results were validated with literature at high accuracy. Melting time, stored energy, temperature variation, and hydrodynamical behavior of the melting derived from numerical simulations are provided. The findings highlight that utilizing MF has reduced the melting time by 87.5 times and it provided a uniform melting due to enhancing the thermal conductivity of the domains. Also, MF has varied melting behavior and the shortest melting time was realized at 120° without MF, while cases with MF experienced the earliest melting at R-60°. However, using MF decreased the stored energy amount at the rate of 5.69% while the highest energy storage was realized without MF of R-60° as 54.83 kJ.m-1.

References

  • [1] S. Tan and X. Zhang, “Progress of research on phase change energy storage materials in their thermal conductivity,” J. Energy Storage, vol. 61, p. 106772, 2023, doi: https://doi.org/10.1016/j.est.2023.106772.
  • [2] B. K. Choure, T. Alam, and R. Kumar, “A review on heat transfer enhancement techniques for PCM based thermal energy storage system,” J. Energy Storage, vol. 72, p. 108161, Nov. 2023, doi: 10.1016/J.EST.2023.108161.
  • [3] G. Liu et al., “Experimental and numerical studies on melting/solidification of PCM in a horizontal tank filled with graded metal foam,” Sol. Energy Mater. Sol. Cells, vol. 250, p. 112092, 2023, doi: https://doi.org/10.1016/j.solmat.2022.112092.
  • [4] S. Liu, H. Wang, Q. Ying, and L. Guo, “Numerical study on the combined application of multiple phase change materials and gradient metal foam in thermal energy storage device,” Appl. Therm. Eng., vol. 257, p. 124267, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2024.124267.
  • [5] M. Xing, Z. Zhang, D. Jing, and H. Chen, “Enhanced solidification/melting heat transfer process by multiple copper metal foam for ice thermal energy storage,” J. Energy Storage, vol. 79, p. 110207, 2024, doi: https://doi.org/10.1016/j.est.2023.110207.
  • [6] C. Yang et al., “Analysis of charging performance of thermal energy storage system with graded metal foam structure and active flip method,” J. Energy Storage, vol. 99, p. 113254, 2024, doi: https://doi.org/10.1016/j.est.2024.113254.
  • [7] S. Shen, H. Zhou, Y. Du, Y. Huo, and Z. Rao, “Investigation on latent heat energy storage using phase change material enhanced by gradient-porosity metal foam,” Appl. Therm. Eng., vol. 236, p. 121760, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2023.121760.
  • [8] A. Alasmari et al., “A shell-tube latent heat thermal energy storage: Influence of metal foam inserts in both shell and tube sides,” Int. Commun. Heat Mass Transf., vol. 159, p. 107992, 2024, doi: https://doi.org/10.1016/j.icheatmasstransfer.2024.107992.
  • [9] M. Bouzidi, M. Sheremet, K. Shank, S. Tiari, and M. Ghalambaz, “Charging and discharging heat transfer improvement of shell-tube storage utilizing a partial layer of anisotropic metal foam,” J. Energy Storage, vol. 79, p. 109948, 2024, doi: https://doi.org/10.1016/j.est.2023.109948.
  • [10] W. Ahmed, A. Hussain, H. Shahid, I. Ali, and H. M. Ali, “Experimental Study on Heat Storage Properties Comparison of Paraffin/Metal Foams Phase Change Material Composites,” J. Therm. Sci., vol. 33, no. 2, pp. 469–478, 2024, doi: 10.1007/s11630-023-1828-5.
  • [11] A. Nassar et al., “Enhancing the thermal transfer properties of phase change material for thermal energy storage by impregnating hybrid nanoparticles within copper foams,” Results Eng., vol. 21, p. 101885, 2024, doi: https://doi.org/10.1016/j.rineng.2024.101885.
  • [12] J. Liu, Y. Xiao, and C. Nie, “Pore-scale study of melting characteristic of phase change material embedded with novel open-celled metal foam,” Int. J. Heat Mass Transf., vol. 228, p. 125634, 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125634.
  • [13] Z. Du, X. Huang, Y. Li, X. Yang, and M.-J. Li, “Design and study of metal foam parameters on whole melting-solidification cycle in phase change heat storage system,” Int. J. Heat Fluid Flow, vol. 106, p. 109299, 2024, doi: https://doi.org/10.1016/j.ijheatfluidflow.2024.109299.
  • [14] A. Moaveni, M. Siavashi, and S. Mousavi, “Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam,” Energy, vol. 288, p. 129809, 2024, doi: https://doi.org/10.1016/j.energy.2023.129809.
  • [15] C. Yang et al., “Melting performance analysis of finned metal foam thermal energy storage tube under steady rotation,” Int. J. Heat Mass Transf., vol. 226, p. 125458, 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125458.
  • [16] Y. Lu et al., “Melting enhancement in a shell-and-tube latent heat storage unit with staggered fin-foam synergistic configuration,” J. Energy Storage, vol. 82, p. 110505, 2024, doi: https://doi.org/10.1016/j.est.2024.110505.
  • [17] S. Rahmanian, Rahmanian-Koushkaki, M. H., Moein-Jahromi, and M. Setareh, “Numerical thermal performance assessment of phase change process in a PCM/foam-fins enclosure under various thermal conditions,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 46, pp. 2360–2376, 2024, doi: https://doi.org/10.1080/15567036.2024.2304642.
  • [18] P. M. Z. Hasan, N. H. Abu-Hamdeh, O. K. Nusier, A. M. Hussin, and H. A. Saad, “Energy storage analysis during melting in presence of metallic fins via numerical method,” J. Energy Storage, vol. 66, p. 107454, 2023, doi: https://doi.org/10.1016/j.est.2023.107454.
  • [19] S. Zhang, L. Pu, L. Xu, and M. Dai, “Study on dominant heat transfer mechanism in vertical smooth/finned-tube thermal energy storage during charging process,” Appl. Therm. Eng., vol. 204, p. 117935, 2022, doi: https://doi.org/10.1016/j.applthermaleng.2021.117935.
  • [20] A. S, A. Sharma, and H. B. Kothadia, “Performance analysis of PCM melting in a fin-assisted thermal energy storage system – A numerical study,” Int. Commun. Heat Mass Transf., vol. 144, p. 106747, 2023, doi: https://doi.org/10.1016/j.icheatmasstransfer.2023.106747.
  • [21] M. K. Fahad, N. F. Ifraj, M. R. Haque, N. M. Chowdhury, and Fatema-Tuj-Zohora, “Numerical investigation on consecutive charging and discharging of PCM with Modified longitudinal fins in shell and tube thermal energy storage,” Results Eng., vol. 24, p. 103577, 2024, doi: https://doi.org/10.1016/j.rineng.2024.103577.
  • [22] S. D. Farahani, A. D. Farahani, A. J. Mamoei, and W.-M. Yan, “Enhancement of phase change material melting using nanoparticles and magnetic field in the thermal energy storage system with strip fins,” J. Energy Storage, vol. 57, p. 106282, 2023, doi: https://doi.org/10.1016/j.est.2022.106282.
  • [23] C. Ao, S. Yan, L. Zhao, and Y. Wu, “Assessment on the effect of longitudinal fins upon melting process in a latent heat thermal energy storage unit,” J. Energy Storage, vol. 59, p. 106408, 2023, doi: https://doi.org/10.1016/j.est.2022.106408.
  • [24] Z. Du, X. Huang, Y. Li, G. Liu, X. Yang, and B. Sundén, “Experimental Study on Melting and Solidification Cycle of a Hybrid Pin Fin/Metal Foam Energy Storage Tank,” ASME J. Heat Mass Transf., vol. 146, no. 8, p. 82401, 2024, doi: 10.1115/1.4065349.
  • [25] X. Huang, Z. Du, Y. Li, X. Yang, and M.-J. Li, “Numerical and optimization study on heat storage and release process of novel fin-metal foam composite structures under periodic heat source,” Int. J. Heat Fluid Flow, vol. 108, p. 109445, 2024, doi: https://doi.org/10.1016/j.ijheatfluidflow.2024.109445.
  • [26] K. Zeng et al., “Comprehensive enhancement of melting-solidifying process in latent heat storage based on eccentric fin-foam combination,” Energy, vol. 313, p. 133693, 2024, doi: https://doi.org/10.1016/j.energy.2024.133693.
  • [27] A. NematpourKeshteli, M. Iasiello, G. Langella, and N. Bianco, “Increasing melting and solidification performances of a phase change material-based flat plate solar collector equipped with metal foams, nanoparticles, and wavy wall-Y-shaped surface,” Energy Convers. Manag., vol. 291, p. 117268, 2023, doi: https://doi.org/10.1016/j.enconman.2023.117268.
  • [28] I. Afaynou, H. Faraji, K. Choukairy, A. Arshad, and M. Arıcı, “Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances,” Int. Commun. Heat Mass Transf., vol. 143, p. 106690, Apr. 2023, doi: 10.1016/J.ICHEATMASSTRANSFER.2023.106690.
  • [29] T. Chen et al., “Investigation and optimal design of partially encapsulated metal foam in a latent heat storage unit for buildings,” J. Energy Storage, vol. 84, p. 110979, 2024, doi: https://doi.org/10.1016/j.est.2024.110979.
  • [30] B. Buonomo, H. Celik, D. Ercole, O. Manca, and M. Mobedi, “Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium,” Appl. Therm. Eng., vol. 159, p. 113980, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2019.113980.
  • [31] W. Lin, G. Xie, J. Yuan, and B. Sundén, “Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model,” Heat Transf. Eng., vol. 37, no. 3–4, pp. 314–322, Mar. 2016, doi: 10.1080/01457632.2015.1052682.
  • [32] A. D. Canonsburg, “ANSYS Fluent User ’ s Guide,” no. August. ANSYS, Inc., 2018.
  • [33] B. Buonomo, M. R. Golia, O. Manca, S. Nardini, and R. E. Plomitallo, “External heat losses effect on shell and tube latent heat thermal energy storages partially filled with metal foam,” J. Energy Storage, vol. 85, p. 111096, Apr. 2024, doi: 10.1016/J.EST.2024.111096.
  • [34] C. Nie, J. Liu, and S. Deng, “Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage,” Int. J. Heat Mass Transf., vol. 165, p. 120652, Feb. 2021, doi: 10.1016/J.IJHEATMASSTRANSFER.2020.120652.
  • [35] S. Huang, J. Lu, and Y. Li, “Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units,” Energy, vol. 239, p. 122489, Jan. 2022, doi: 10.1016/J.ENERGY.2021.122489.
  • [36] F. Oflaz, “Evaluation of the thermo-hydraulic behavior of water-based graphene and Al2O3 hybrid nanofluids in a circular tube through CFD simulations,” J. Therm. Anal. Calorim., 2025, doi: 10.1007/s10973-025-13993-4.
  • [37] M. H. Zolfagharnasab, M. Salimi, and C. Aghanajafi, “Application of non-pressure-based coupled procedures for the solution of heat and mass transfer for the incompressible fluid flow phenomenon,” Int. J. Heat Mass Transf., vol. 181, p. 121851, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121851.
  • [38] T. Saeed, “Influence of the number of holes and two types of PCM in brick on the heat flux passing through the wall of a building on a sunny day in Medina, Saudi Arabia,” J. Build. Eng., vol. 50, p. 104215, 2022, doi: https://doi.org/10.1016/j.jobe.2022.104215.
  • [39] S. Patankar, Numerical heat transfer and fluid flow. CRC press, 2018.
  • [40] H. K. Versteeg, An introduction to computational fluid dynamics the finite volume method, 2/E. Pearson Education India, 2007.
  • [41] C. Z. Ji, Z. Qin, Z. H. Low, S. Dubey, F. H. Choo, and F. Duan, “Transient numerical study on enhancement of phase change material thermal storage with angled parallel fins,” 2017.
  • [42] Ansys Inc., “Ansys Fluent User Guide,” 2019. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node352.htm

Dikey Gizli Isı Enerji Depolama Sisteminde Üçgen Kanat Eğim Açısının ve Alüminyum Metal Köpüğün Erime Sürecine Etkisi

Year 2025, Volume: 6 Issue: 1, 11 - 30
https://doi.org/10.53525/jster.1635055

Abstract

Bu sayısal çalışmanın temel amacı, metal köpük (MF) bulunan ve bulunmayan dikey dikdörtgen bir boşluk olarak tasarlanan Gizli Isı Termal Enerji Depolama (LHTES) sisteminde üçgen kanat eğim açılarının (IA’lar) erime süreci üzerindeki etkisini incelemektir. Çalışmada, faz değişim malzemesi (PCM) olarak parafin balmumu tüm hacmi doldurmuş ve yerel termal denge (LTE) varsayımı altında Brinkman-Darcy-Forchheimer modeli ile entalpi-gözeneklilik yöntemi kullanılarak erime süreci simüle edilmiştir. Toplamda 14 farklı durum analiz edilmiş ve elde edilen sonuçlar literatür ile yüksek doğrulukta doğrulanmıştır. Sayısal simülasyonlardan elde edilen erime süresi, depolanan enerji, sıcaklık değişimi ve erime sürecinin hidrodinamik davranışı sunulmuştur. Bulgular, MF kullanımının erime süresini 87,5 kat azalttığını ve alanların ısıl iletkenliğini artırarak daha homojen bir erime sağladığını göstermektedir. Ayrıca, MF’nin erime davranışını değiştirdiği ve MF olmayan durumlarda en kısa erime süresinin 120° açıda gerçekleştiği, MF bulunan durumlarda ise en erken erimenin R-60°’de gözlemlendiği belirlenmiştir. Ancak, MF kullanımı depolanan enerji miktarını %5,69 oranında azaltmıştır ve en yüksek enerji depolama miktarı MF bulunmayan R-60° durumunda 54,83 kJ.m⁻¹ olarak gerçekleşmiştir.

References

  • [1] S. Tan and X. Zhang, “Progress of research on phase change energy storage materials in their thermal conductivity,” J. Energy Storage, vol. 61, p. 106772, 2023, doi: https://doi.org/10.1016/j.est.2023.106772.
  • [2] B. K. Choure, T. Alam, and R. Kumar, “A review on heat transfer enhancement techniques for PCM based thermal energy storage system,” J. Energy Storage, vol. 72, p. 108161, Nov. 2023, doi: 10.1016/J.EST.2023.108161.
  • [3] G. Liu et al., “Experimental and numerical studies on melting/solidification of PCM in a horizontal tank filled with graded metal foam,” Sol. Energy Mater. Sol. Cells, vol. 250, p. 112092, 2023, doi: https://doi.org/10.1016/j.solmat.2022.112092.
  • [4] S. Liu, H. Wang, Q. Ying, and L. Guo, “Numerical study on the combined application of multiple phase change materials and gradient metal foam in thermal energy storage device,” Appl. Therm. Eng., vol. 257, p. 124267, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2024.124267.
  • [5] M. Xing, Z. Zhang, D. Jing, and H. Chen, “Enhanced solidification/melting heat transfer process by multiple copper metal foam for ice thermal energy storage,” J. Energy Storage, vol. 79, p. 110207, 2024, doi: https://doi.org/10.1016/j.est.2023.110207.
  • [6] C. Yang et al., “Analysis of charging performance of thermal energy storage system with graded metal foam structure and active flip method,” J. Energy Storage, vol. 99, p. 113254, 2024, doi: https://doi.org/10.1016/j.est.2024.113254.
  • [7] S. Shen, H. Zhou, Y. Du, Y. Huo, and Z. Rao, “Investigation on latent heat energy storage using phase change material enhanced by gradient-porosity metal foam,” Appl. Therm. Eng., vol. 236, p. 121760, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2023.121760.
  • [8] A. Alasmari et al., “A shell-tube latent heat thermal energy storage: Influence of metal foam inserts in both shell and tube sides,” Int. Commun. Heat Mass Transf., vol. 159, p. 107992, 2024, doi: https://doi.org/10.1016/j.icheatmasstransfer.2024.107992.
  • [9] M. Bouzidi, M. Sheremet, K. Shank, S. Tiari, and M. Ghalambaz, “Charging and discharging heat transfer improvement of shell-tube storage utilizing a partial layer of anisotropic metal foam,” J. Energy Storage, vol. 79, p. 109948, 2024, doi: https://doi.org/10.1016/j.est.2023.109948.
  • [10] W. Ahmed, A. Hussain, H. Shahid, I. Ali, and H. M. Ali, “Experimental Study on Heat Storage Properties Comparison of Paraffin/Metal Foams Phase Change Material Composites,” J. Therm. Sci., vol. 33, no. 2, pp. 469–478, 2024, doi: 10.1007/s11630-023-1828-5.
  • [11] A. Nassar et al., “Enhancing the thermal transfer properties of phase change material for thermal energy storage by impregnating hybrid nanoparticles within copper foams,” Results Eng., vol. 21, p. 101885, 2024, doi: https://doi.org/10.1016/j.rineng.2024.101885.
  • [12] J. Liu, Y. Xiao, and C. Nie, “Pore-scale study of melting characteristic of phase change material embedded with novel open-celled metal foam,” Int. J. Heat Mass Transf., vol. 228, p. 125634, 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125634.
  • [13] Z. Du, X. Huang, Y. Li, X. Yang, and M.-J. Li, “Design and study of metal foam parameters on whole melting-solidification cycle in phase change heat storage system,” Int. J. Heat Fluid Flow, vol. 106, p. 109299, 2024, doi: https://doi.org/10.1016/j.ijheatfluidflow.2024.109299.
  • [14] A. Moaveni, M. Siavashi, and S. Mousavi, “Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam,” Energy, vol. 288, p. 129809, 2024, doi: https://doi.org/10.1016/j.energy.2023.129809.
  • [15] C. Yang et al., “Melting performance analysis of finned metal foam thermal energy storage tube under steady rotation,” Int. J. Heat Mass Transf., vol. 226, p. 125458, 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125458.
  • [16] Y. Lu et al., “Melting enhancement in a shell-and-tube latent heat storage unit with staggered fin-foam synergistic configuration,” J. Energy Storage, vol. 82, p. 110505, 2024, doi: https://doi.org/10.1016/j.est.2024.110505.
  • [17] S. Rahmanian, Rahmanian-Koushkaki, M. H., Moein-Jahromi, and M. Setareh, “Numerical thermal performance assessment of phase change process in a PCM/foam-fins enclosure under various thermal conditions,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 46, pp. 2360–2376, 2024, doi: https://doi.org/10.1080/15567036.2024.2304642.
  • [18] P. M. Z. Hasan, N. H. Abu-Hamdeh, O. K. Nusier, A. M. Hussin, and H. A. Saad, “Energy storage analysis during melting in presence of metallic fins via numerical method,” J. Energy Storage, vol. 66, p. 107454, 2023, doi: https://doi.org/10.1016/j.est.2023.107454.
  • [19] S. Zhang, L. Pu, L. Xu, and M. Dai, “Study on dominant heat transfer mechanism in vertical smooth/finned-tube thermal energy storage during charging process,” Appl. Therm. Eng., vol. 204, p. 117935, 2022, doi: https://doi.org/10.1016/j.applthermaleng.2021.117935.
  • [20] A. S, A. Sharma, and H. B. Kothadia, “Performance analysis of PCM melting in a fin-assisted thermal energy storage system – A numerical study,” Int. Commun. Heat Mass Transf., vol. 144, p. 106747, 2023, doi: https://doi.org/10.1016/j.icheatmasstransfer.2023.106747.
  • [21] M. K. Fahad, N. F. Ifraj, M. R. Haque, N. M. Chowdhury, and Fatema-Tuj-Zohora, “Numerical investigation on consecutive charging and discharging of PCM with Modified longitudinal fins in shell and tube thermal energy storage,” Results Eng., vol. 24, p. 103577, 2024, doi: https://doi.org/10.1016/j.rineng.2024.103577.
  • [22] S. D. Farahani, A. D. Farahani, A. J. Mamoei, and W.-M. Yan, “Enhancement of phase change material melting using nanoparticles and magnetic field in the thermal energy storage system with strip fins,” J. Energy Storage, vol. 57, p. 106282, 2023, doi: https://doi.org/10.1016/j.est.2022.106282.
  • [23] C. Ao, S. Yan, L. Zhao, and Y. Wu, “Assessment on the effect of longitudinal fins upon melting process in a latent heat thermal energy storage unit,” J. Energy Storage, vol. 59, p. 106408, 2023, doi: https://doi.org/10.1016/j.est.2022.106408.
  • [24] Z. Du, X. Huang, Y. Li, G. Liu, X. Yang, and B. Sundén, “Experimental Study on Melting and Solidification Cycle of a Hybrid Pin Fin/Metal Foam Energy Storage Tank,” ASME J. Heat Mass Transf., vol. 146, no. 8, p. 82401, 2024, doi: 10.1115/1.4065349.
  • [25] X. Huang, Z. Du, Y. Li, X. Yang, and M.-J. Li, “Numerical and optimization study on heat storage and release process of novel fin-metal foam composite structures under periodic heat source,” Int. J. Heat Fluid Flow, vol. 108, p. 109445, 2024, doi: https://doi.org/10.1016/j.ijheatfluidflow.2024.109445.
  • [26] K. Zeng et al., “Comprehensive enhancement of melting-solidifying process in latent heat storage based on eccentric fin-foam combination,” Energy, vol. 313, p. 133693, 2024, doi: https://doi.org/10.1016/j.energy.2024.133693.
  • [27] A. NematpourKeshteli, M. Iasiello, G. Langella, and N. Bianco, “Increasing melting and solidification performances of a phase change material-based flat plate solar collector equipped with metal foams, nanoparticles, and wavy wall-Y-shaped surface,” Energy Convers. Manag., vol. 291, p. 117268, 2023, doi: https://doi.org/10.1016/j.enconman.2023.117268.
  • [28] I. Afaynou, H. Faraji, K. Choukairy, A. Arshad, and M. Arıcı, “Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances,” Int. Commun. Heat Mass Transf., vol. 143, p. 106690, Apr. 2023, doi: 10.1016/J.ICHEATMASSTRANSFER.2023.106690.
  • [29] T. Chen et al., “Investigation and optimal design of partially encapsulated metal foam in a latent heat storage unit for buildings,” J. Energy Storage, vol. 84, p. 110979, 2024, doi: https://doi.org/10.1016/j.est.2024.110979.
  • [30] B. Buonomo, H. Celik, D. Ercole, O. Manca, and M. Mobedi, “Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium,” Appl. Therm. Eng., vol. 159, p. 113980, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2019.113980.
  • [31] W. Lin, G. Xie, J. Yuan, and B. Sundén, “Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model,” Heat Transf. Eng., vol. 37, no. 3–4, pp. 314–322, Mar. 2016, doi: 10.1080/01457632.2015.1052682.
  • [32] A. D. Canonsburg, “ANSYS Fluent User ’ s Guide,” no. August. ANSYS, Inc., 2018.
  • [33] B. Buonomo, M. R. Golia, O. Manca, S. Nardini, and R. E. Plomitallo, “External heat losses effect on shell and tube latent heat thermal energy storages partially filled with metal foam,” J. Energy Storage, vol. 85, p. 111096, Apr. 2024, doi: 10.1016/J.EST.2024.111096.
  • [34] C. Nie, J. Liu, and S. Deng, “Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage,” Int. J. Heat Mass Transf., vol. 165, p. 120652, Feb. 2021, doi: 10.1016/J.IJHEATMASSTRANSFER.2020.120652.
  • [35] S. Huang, J. Lu, and Y. Li, “Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units,” Energy, vol. 239, p. 122489, Jan. 2022, doi: 10.1016/J.ENERGY.2021.122489.
  • [36] F. Oflaz, “Evaluation of the thermo-hydraulic behavior of water-based graphene and Al2O3 hybrid nanofluids in a circular tube through CFD simulations,” J. Therm. Anal. Calorim., 2025, doi: 10.1007/s10973-025-13993-4.
  • [37] M. H. Zolfagharnasab, M. Salimi, and C. Aghanajafi, “Application of non-pressure-based coupled procedures for the solution of heat and mass transfer for the incompressible fluid flow phenomenon,” Int. J. Heat Mass Transf., vol. 181, p. 121851, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121851.
  • [38] T. Saeed, “Influence of the number of holes and two types of PCM in brick on the heat flux passing through the wall of a building on a sunny day in Medina, Saudi Arabia,” J. Build. Eng., vol. 50, p. 104215, 2022, doi: https://doi.org/10.1016/j.jobe.2022.104215.
  • [39] S. Patankar, Numerical heat transfer and fluid flow. CRC press, 2018.
  • [40] H. K. Versteeg, An introduction to computational fluid dynamics the finite volume method, 2/E. Pearson Education India, 2007.
  • [41] C. Z. Ji, Z. Qin, Z. H. Low, S. Dubey, F. H. Choo, and F. Duan, “Transient numerical study on enhancement of phase change material thermal storage with angled parallel fins,” 2017.
  • [42] Ansys Inc., “Ansys Fluent User Guide,” 2019. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node352.htm
There are 42 citations in total.

Details

Primary Language English
Subjects Energy, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Emrehan Gürsoy 0000-0003-2373-3357

Mehmet Gürdal 0000-0003-2209-3394

Engin Gedik 0000-0002-3407-6121

Publication Date
Submission Date February 7, 2025
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Gürsoy, E., Gürdal, M., & Gedik, E. (n.d.). Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System. Journal of Science, Technology and Engineering Research, 6(1), 11-30. https://doi.org/10.53525/jster.1635055
AMA Gürsoy E, Gürdal M, Gedik E. Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System. Journal of Science, Technology and Engineering Research. 6(1):11-30. doi:10.53525/jster.1635055
Chicago Gürsoy, Emrehan, Mehmet Gürdal, and Engin Gedik. “Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System”. Journal of Science, Technology and Engineering Research 6, no. 1 n.d.: 11-30. https://doi.org/10.53525/jster.1635055.
EndNote Gürsoy E, Gürdal M, Gedik E Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System. Journal of Science, Technology and Engineering Research 6 1 11–30.
IEEE E. Gürsoy, M. Gürdal, and E. Gedik, “Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System”, Journal of Science, Technology and Engineering Research, vol. 6, no. 1, pp. 11–30, doi: 10.53525/jster.1635055.
ISNAD Gürsoy, Emrehan et al. “Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System”. Journal of Science, Technology and Engineering Research 6/1 (n.d.), 11-30. https://doi.org/10.53525/jster.1635055.
JAMA Gürsoy E, Gürdal M, Gedik E. Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System. Journal of Science, Technology and Engineering Research.;6:11–30.
MLA Gürsoy, Emrehan et al. “Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System”. Journal of Science, Technology and Engineering Research, vol. 6, no. 1, pp. 11-30, doi:10.53525/jster.1635055.
Vancouver Gürsoy E, Gürdal M, Gedik E. Effect of Triangle Fin Inclination Angle and Aluminum Metal Foam on Melting Process in A Vertical Latent Heat Energy Storage System. Journal of Science, Technology and Engineering Research. 6(1):11-30.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!