Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 182 - 193, 18.07.2024
https://doi.org/10.56554/jtom.1363324

Abstract

References

  • Acatay, K. (2004). Generation of superhydrophobic surfaces by electrospinning process (Doctoral dissertation) DOI: https://research.sabanciuniv.edu/id/eprint/8213
  • Ahmadipourroudposht, M., Fallahiarezoudar, E., Yusof, N. M., & Idris, A. (2015). Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Materials Science and Engineering: C, 50, 234-241. DOI: https://doi.org/10.1016/j.msec.2015.02.008
  • Akkoyun S., Öktem N., (2021), Effect of viscoelasticity in polymer nanofiber electrospinning: Simulation using FENE-CR model. Engineering Science and Technology, an International Journal, 24(3), 620-630 DOI: https://doi.org/10.1016/j.jestch.2020.12.017
  • Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017, June). The influence of polymer solution on the properties of electrospun 3D nanostructures. In IOP conference series: Materials science and engineering (Vol. 209, No. 1, p. 012092). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/209/1/012092
  • Amiri, N., Moradi, A., Tabasi, S. A. S., & Movaffagh, J. (2018). Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology. Materials Research Express, 5(4), 045404. DOI: https://doi.org/10.1088/2053-1591/aaba1d
  • Fatile, B. O., Pugh, M., & Medraj, M. (2021). Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology. Nanomaterials, 11(7), 1644. DOI: https://doi.org/10.3390/nano11071644
  • Filip, P., & Peer, P. (2019). Characterization of poly (ethylene oxide) nanofibers—Mutual relations between mean diameter of electrospun nanofibers and solution characteristics. Processes, 7(12), 948. DOI: https://doi.org/10.3390/pr7120948
  • He, H., Wang, Y., Farkas, B., Nagy, Z. K., & Molnar, K. (2020). Analysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodology. Materials & Design, 194, 108902. DOI: https://doi.org/10.1016/j.matdes.2020.108902
  • Kalantary, S., Jahani, A., & Jahani, R. (2020). MLR and Ann approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Scientific Reports, 10(1), 1-10. DOI: https://doi.org/10.1038/s41598-020-65121-x
  • Kalantary, S., Jahani, A., Pourbabaki, R., & Beigzadeh, Z. (2019). Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies. RSC advances, 9(43), 24858-24874. DOI: https://doi.org/10.1039/C9RA04927D
  • Ketabchi, N., Naghibzadeh, M., Adabi, M., Esnaashari, S. S., & Faridi-Majidi, R. (2017). Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications, 28(11), 3131-3143. DOI: https://doi.org/10.1007/s00521-016-2212-0
  • Khalili, S., Khorasani, S. N., Saadatkish, N., & Khoshakhlagh, K. (2016). Characterization of gelatin/cellulose acetate nanofibrous scaffolds: Prediction and optimization by response surface methodology and artificial neural networks. Polymer Science Series A, 58(3), 399-408. DOI: https://doi.org/10.1134/S0965545X16030093
  • Naderi, N., Agend, F., Faridi-Majidi, R., Sharifi-Sanjani, N., & Madani, M. (2008). Prediction of nanofiber diameter and optimization of electrospinning process via response surface methodology. Journal of nanoscience and nanotechnology, 8(5), 2509-2515. DOI: https://doi.org/10.1166/jnn.2008.536
  • Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A. M., & Kaflou, A. (2012). Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. Journal of Applied Polymer Science, 126(1), 127-135. DOI: https://doi.org/10.1002/app.36726
  • Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M., & Ko, F. (2004). Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology. Polymer, 45(11), 3701-3708. DOI: https://doi.org/10.1016/j.polymer.2004.03.059
  • Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913-6922. DOI: https://doi.org/10.1016/j.polymer.2007.09.017
  • Zeraati, M., Pourmohamad, R., Baghchi, B., Chauhan, N. P. S., & Sargazi, G. (2021). Optimization and predictive modelling for the diameter of nylon-6, 6 nanofibers via electrospinning for coronavirus face masks. Journal of Saudi Chemical Society, 25(11), 101348. DOI: https://doi.org/10.1016/j.jscs.2021.101348

Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design

Year 2024, Volume: 8 Issue: 1, 182 - 193, 18.07.2024
https://doi.org/10.56554/jtom.1363324

Abstract

The utilization of 2-level factorial design has been extensive in the literature to observe the relationship between parameters and responses. Among the subjects open for exploration, the process of nanofiber creation stands out as an intriguing avenue to explore the correlations that emerge between variables and outcomes. The primary objective of the study is to establish the relationships between the parameters of electrospinning of polyamide 6 (PA6) solutions to obtain desired nanofiber diameters by response surface method (RSM) and two level full factorial design. The investigation hones in on four critical parameters related to the electrospinning of PA6 solutions. These parameters encompass factors like solution concentration, applied voltage, distance between the spinneret and the collector, and the flow rate of the solution. Employing a two-level factorial design, these parameters are methodically manipulated at two distinct levels each to systematically unravel their individual and collective impacts on nanofiber diameter outcomes. To understand the relationship between electrospinning process and these factors, these kind of experimental studies gives us much accurate results.

Ethical Statement

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm

References

  • Acatay, K. (2004). Generation of superhydrophobic surfaces by electrospinning process (Doctoral dissertation) DOI: https://research.sabanciuniv.edu/id/eprint/8213
  • Ahmadipourroudposht, M., Fallahiarezoudar, E., Yusof, N. M., & Idris, A. (2015). Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Materials Science and Engineering: C, 50, 234-241. DOI: https://doi.org/10.1016/j.msec.2015.02.008
  • Akkoyun S., Öktem N., (2021), Effect of viscoelasticity in polymer nanofiber electrospinning: Simulation using FENE-CR model. Engineering Science and Technology, an International Journal, 24(3), 620-630 DOI: https://doi.org/10.1016/j.jestch.2020.12.017
  • Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017, June). The influence of polymer solution on the properties of electrospun 3D nanostructures. In IOP conference series: Materials science and engineering (Vol. 209, No. 1, p. 012092). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/209/1/012092
  • Amiri, N., Moradi, A., Tabasi, S. A. S., & Movaffagh, J. (2018). Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology. Materials Research Express, 5(4), 045404. DOI: https://doi.org/10.1088/2053-1591/aaba1d
  • Fatile, B. O., Pugh, M., & Medraj, M. (2021). Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology. Nanomaterials, 11(7), 1644. DOI: https://doi.org/10.3390/nano11071644
  • Filip, P., & Peer, P. (2019). Characterization of poly (ethylene oxide) nanofibers—Mutual relations between mean diameter of electrospun nanofibers and solution characteristics. Processes, 7(12), 948. DOI: https://doi.org/10.3390/pr7120948
  • He, H., Wang, Y., Farkas, B., Nagy, Z. K., & Molnar, K. (2020). Analysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodology. Materials & Design, 194, 108902. DOI: https://doi.org/10.1016/j.matdes.2020.108902
  • Kalantary, S., Jahani, A., & Jahani, R. (2020). MLR and Ann approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Scientific Reports, 10(1), 1-10. DOI: https://doi.org/10.1038/s41598-020-65121-x
  • Kalantary, S., Jahani, A., Pourbabaki, R., & Beigzadeh, Z. (2019). Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies. RSC advances, 9(43), 24858-24874. DOI: https://doi.org/10.1039/C9RA04927D
  • Ketabchi, N., Naghibzadeh, M., Adabi, M., Esnaashari, S. S., & Faridi-Majidi, R. (2017). Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications, 28(11), 3131-3143. DOI: https://doi.org/10.1007/s00521-016-2212-0
  • Khalili, S., Khorasani, S. N., Saadatkish, N., & Khoshakhlagh, K. (2016). Characterization of gelatin/cellulose acetate nanofibrous scaffolds: Prediction and optimization by response surface methodology and artificial neural networks. Polymer Science Series A, 58(3), 399-408. DOI: https://doi.org/10.1134/S0965545X16030093
  • Naderi, N., Agend, F., Faridi-Majidi, R., Sharifi-Sanjani, N., & Madani, M. (2008). Prediction of nanofiber diameter and optimization of electrospinning process via response surface methodology. Journal of nanoscience and nanotechnology, 8(5), 2509-2515. DOI: https://doi.org/10.1166/jnn.2008.536
  • Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A. M., & Kaflou, A. (2012). Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. Journal of Applied Polymer Science, 126(1), 127-135. DOI: https://doi.org/10.1002/app.36726
  • Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M., & Ko, F. (2004). Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology. Polymer, 45(11), 3701-3708. DOI: https://doi.org/10.1016/j.polymer.2004.03.059
  • Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913-6922. DOI: https://doi.org/10.1016/j.polymer.2007.09.017
  • Zeraati, M., Pourmohamad, R., Baghchi, B., Chauhan, N. P. S., & Sargazi, G. (2021). Optimization and predictive modelling for the diameter of nylon-6, 6 nanofibers via electrospinning for coronavirus face masks. Journal of Saudi Chemical Society, 25(11), 101348. DOI: https://doi.org/10.1016/j.jscs.2021.101348
There are 17 citations in total.

Details

Primary Language English
Subjects Statistical Analysis, Statistical Experiment Design, Applied Statistics
Journal Section Research Article
Authors

Deniz Efendioğlu 0000-0002-3710-9187

Şerife Akkoyun 0000-0002-6676-6389

Early Pub Date July 18, 2024
Publication Date July 18, 2024
Submission Date September 19, 2023
Acceptance Date January 29, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Efendioğlu, D., & Akkoyun, Ş. (2024). Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design. Journal of Turkish Operations Management, 8(1), 182-193. https://doi.org/10.56554/jtom.1363324
AMA Efendioğlu D, Akkoyun Ş. Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design. JTOM. July 2024;8(1):182-193. doi:10.56554/jtom.1363324
Chicago Efendioğlu, Deniz, and Şerife Akkoyun. “Optimization of Nanofiber Diameter in the Electrospinning of Polyamide 6 by Two-Level Factorial Design”. Journal of Turkish Operations Management 8, no. 1 (July 2024): 182-93. https://doi.org/10.56554/jtom.1363324.
EndNote Efendioğlu D, Akkoyun Ş (July 1, 2024) Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design. Journal of Turkish Operations Management 8 1 182–193.
IEEE D. Efendioğlu and Ş. Akkoyun, “Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design”, JTOM, vol. 8, no. 1, pp. 182–193, 2024, doi: 10.56554/jtom.1363324.
ISNAD Efendioğlu, Deniz - Akkoyun, Şerife. “Optimization of Nanofiber Diameter in the Electrospinning of Polyamide 6 by Two-Level Factorial Design”. Journal of Turkish Operations Management 8/1 (July 2024), 182-193. https://doi.org/10.56554/jtom.1363324.
JAMA Efendioğlu D, Akkoyun Ş. Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design. JTOM. 2024;8:182–193.
MLA Efendioğlu, Deniz and Şerife Akkoyun. “Optimization of Nanofiber Diameter in the Electrospinning of Polyamide 6 by Two-Level Factorial Design”. Journal of Turkish Operations Management, vol. 8, no. 1, 2024, pp. 182-93, doi:10.56554/jtom.1363324.
Vancouver Efendioğlu D, Akkoyun Ş. Optimization of nanofiber diameter in the electrospinning of polyamide 6 by two-level factorial design. JTOM. 2024;8(1):182-93.

2229319697  logo   logo-minik.png 200311739617396