Year 2024,
Volume: 8 Issue: 1, 241 - 268, 18.07.2024
Ibrahim Temam Ibrahim
,
Ali Osman Kusakci
,
Amna Abdullah
References
- Ahmad, S., Nadeem, A., Akhanova, G., Houghton, T., & Muhammad-Sukki, F. (2017). Multi-criteria
evaluation of renewable and nuclear resources for electricity generation in Kazakhstan. Energy, 141, 1880–
1891. https://doi.org/10.1016/j.energy.2017.11.102
- Alkema, B., R. G. (2022). Aviation’s net-zero ambitions meet resistance in the run-up to COP26 -le.
https://runwaygirlnetwork.com/2021/10/aviations-net-zero-ambitions-meet-resistance-cop26/
- Atag.org. (2022). Air Transport Action Group. (2020, September). Facts and figures. www.atag.org/factsfigures.
HTML
- Atsonios, K., Kougioumtzis, M.-A., D. Panopoulos, K., & Kakaras, E. (2015). Alternative thermochemical
routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and
comparison. Applied Energy, 138, 346–366. https://doi.org/10.1016/j.apenergy.2014.10.056
- aviationbenefits.org. (2022). Air Transport Action Group. (2021). Waypoint 2050.tle.
https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/
Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy
AHP-VIKOR based approach. International Journal of Production Economics, 195, 106–117.
https://doi.org/10.1016/j.ijpe.2017.10.013
- Bann, S. J., Malina, R., Staples, M. D., Suresh, P., Pearlson, M., Tyner, W. E., Hileman, J. I., & Barrett, S.
(2017). The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresource
Technology, 227, 179–187. https://doi.org/10.1016/j.biortech.2016.12.032
- Baudry, G., Macharis, C., & Vallée, T. (2018). Can microalgae biodiesel contribute to achieve the sustainability
objectives in the transport sector in France by 2030? A comparison between first, second and third generation
biofuels though a range-based Multi-Actor Multi-Criteria Analysis. Energy, 155, 1032–1046.
https://doi.org/10.1016/j.energy.2018.05.038
- Brans, J. P., & Vincke, P. (1985). Note—A Preference Ranking Organisation Method. Management Science,
31(6), 647–656. https://doi.org/10.1287/mnsc.31.6.647
CAAFI. (n.d.). Fuel Qualification. (2022b). Retrieved December 13, 2022, from
https://www.caafi.org/focus_areas/feedstocks.html
CAAFI. (2019). Etihad Airways Flies from Abu Dhabi to Amsterdam on AJF Blend from Halophytes.
https://caafi.org/news/NewsItem.aspx?id=10442
C
astello, D., Haider, M. S., & Rosendahl, L. A. (2019). Catalytic upgrading of hydrothermal liquefaction
İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024
262
biocrudes: Different challenges for different feedstocks. Renewable Energy, 141, 420–430.
https://doi.org/10.1016/j.renene.2019.04.003
- Chen, Y.-K., Lin, C.-H., & Wang, W.-C. (2020). The conversion of biomass into renewable jet fuel. Energy,
201, 117655. https://doi.org/10.1016/j.energy.2020.117655
- Cheng, F., & Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkylbenzenes
and cycloalkanes. Renewable and Sustainable Energy Reviews, 72, 673–722.
https://doi.org/10.1016/j.rser.2017.01.030
- Chevron Products Company. (2004). Aviation Fuels Technical Review. https://www.chevron.com/-
/media/chevron/operations/documents/aviation-tech-review.pdf
- Chiaramonti, D. (2019). Sustainable Aviation Fuels: the challenge of decarbonization. Energy Procedia, 158,
1202–1207. https://doi.org/10.1016/j.egypro.2019.01.308
- Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.
https://doi.org/10.1016/j.biotechadv.2007.02.001
- Dayton, D. C., & Foust, T. D. (2020). Alternative Jet Fuels. In Analytical Methods for Biomass
Characterization and Conversion (pp. 147–165). Elsevier. https://doi.org/10.1016/B978-0-12-815605-
6.00010-X
- de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., & Junginger, M. (2015). The feasibility of
short‐term production strategies for renewable jet fuels – a comprehensive techno‐economic comparison.
Biofuels, Bioproducts and Biorefining, 9(6), 778–800. https://doi.org/10.1002/bbb.1613
- Diederichs, G. W., Ali Mandegari, M., Farzad, S., & Görgens, J. F. (2016). Techno-economic comparison of
biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource Technology, 216,
331–339. https://doi.org/10.1016/j.biortech.2016.05.090
- Dožić, S. (2019). Multi-criteria decision making methods: Application in the aviation industry. Journal of Air
Transport Management, 79, 101683. https://doi.org/10.1016/j.jairtraman.2019.101683
- Dyk, S. van. E. C. R. (2021). ReFuelEU Aviation proposal details SAF blending obligation on fuel suppliers.
https://www.greenairnews.com/?p=1374
- Efroymson, R. A., Dale, V. H., & Langholtz, M. H. (2017). Socioeconomic indicators for sustainable design
and commercial development of algal biofuel systems. GCB Bioenergy, 9(6), 1005–1023.
https://doi.org/10.1111/gcbb.12359
- Fiorese, G., Catenacci, M., Verdolini, E., & Bosetti, V. (2013). Advanced biofuels: Future perspectives from
an expert elicitation survey. Energy Policy, 56, 293–311. https://doi.org/10.1016/j.enpol.2012.12.061
- Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of
bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82.
https://doi.org/10.1016/j.apenergy.2014.01.077
- Ganguly, I., Pierobon, F., Bowers, T. C., Huisenga, M., Johnston, G., & Eastin, I. L. (2018). ‘Woods-to-Wake’
Life Cycle Assessment of residual woody biomass based jet-fuel using mild bisulfite pretreatment. Biomass
and Bioenergy, 108, 207–216. https://doi.org/10.1016/j.biombioe.2017.10.041
- Gegg, P., & Wells, V. (2017). UK Macro-Algae Biofuels: A Strategic Management Review and Future
Research Agenda. Journal of Marine Science and Engineering, 5(3), 32. https://doi.org/10.3390/jmse5030032
- Geleynse, S., Jiang, Z., Brandt, K., Garcia-Perez, M., Wolcott, M., & Zhang, X. (2020). Pulp mill integration
with alcohol-to-jet conversion technology. Fuel Processing Technology, 201, 106338.
https://doi.org/10.1016/j.fuproc.2020.106338
- Heyne, J., Rauch, B., Le Clercq, P., & Colket, M. (2021). Sustainable aviation fuel prescreening tools and
procedures. Fuel, 290, 120004. https://doi.org/10.1016/j.fuel.2020.120004
- Hileman, J. I., & Stratton, R. W. (2014). Alternative jet fuel feasibility. Transport Policy, 34, 52–62.
https://doi.org/10.1016/j.tranpol.2014.02.018
- IATA. (2019). Sustainable Aviation Fuels Fact sheet.
https://www.iata.org/contentassets/ed476ad1a80f4ec7949204e0d9e34a7f/fact-sheet-alternative-fuels.pdf.
- ICAO. (2016). Environmental Report. www.icao.int/environmental-protection/Pages/env2016.aspx.
- ICAO. (2022). Sustainable Aviation Fuels (SAF). www.icao.int/environmental-protection/pages/SAF.aspx
- EA. (2022). Aviation – Analysis. https://www.iea.org/reports/aviation
- International Civil Aviation Organization. (2019). Trends in Emissions that Affect Climate Change.
https://www.icao.int/environmental-protection/Pages/ClimateChange_Trends.aspx
- International Civil Aviation Organization. (2022). COVID-19 impacts and 2022 CORSIA periodic review.
https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-and-Covid-19.aspx
- International Civil Aviation Organization. (2021). https://bit.ly/3ruI5p8
- Kivits, R., Charles, M. B., & Ryan, N. (2010). A post-carbon aviation future: Airports and the transition to a
cleaner aviation sector. Futures, 42(3), 199–211. https://doi.org/10.1016/j.futures.2009.11.005
- Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardoso, T. de F., Cavalett, O., & Bonomi,
A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated
Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305.
https://doi.org/10.1016/j.apenergy.2017.10.079
- Kolosz, B. W., Luo, Y., Xu, B., Maroto-Valer, M. M., & Andresen, J. M. (2020). Life cycle environmental
analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy & Fuels, 4(7), 3229–3263.
https://doi.org/10.1039/C9SE00788A
- Lanzini, P., Testa, F., & Iraldo, F. (2016). Factors affecting drivers’ willingness to pay for biofuels: the case
of Italy. Journal of Cleaner Production, 112, 2684–2692. https://doi.org/10.1016/j.jclepro.2015.10.080
- Li, X., Mupondwa, E., & Tabil, L. (2018). Technoeconomic analysis of biojet fuel production from camelina
at commercial scale: Case of Canadian Prairies. Bioresource Technology, 249, 196–205.
https://doi.org/10.1016/j.biortech.2017.09.183
- Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E., & Nalianda, D. (2015). Life cycle greenhouse gas analysis
of biojet fuels with a technical investigation into their impact on jet engine performance. Biomass and
Bioenergy, 77, 26–44. https://doi.org/10.1016/j.biombioe.2015.03.005
- Michailos, S. (2018). Process design, economic evaluation and life cycle assessment of jet fuel production
from sugar cane residue. Environmental Progress & Sustainable Energy, 37(3), 1227–1235.
https://doi.org/10.1002/ep.12840
- Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., & Aminul Islam, A. K. M. (2017). Jatropha
Biofuel Industry: The Challenges. In Frontiers in Bioenergy and Biofuels. InTech.
https://doi.org/10.5772/64979
- Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D’Ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M.,
Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
- D., Shook, M., Slover, G., … Anderson, B. E. (2017). Biofuel blending reduces particle emissions from aircraft
engines at cruise conditions. Nature, 543(7645), 411–415. https://doi.org/10.1038/nature21420
- Neuling, U., & Kaltschmitt, M. (2018). Techno-economic and environmental analysis of aviation biofuels.
Fuel Processing Technology, 171, 54–69. https://doi.org/10.1016/j.fuproc.2017.09.022
- O’Connell, A., Kousoulidou, M., Lonza, L., & Weindorf, W. (2019). Considerations on GHG emissions and
energy balances of promising aviation biofuel pathways. Renewable and Sustainable Energy Reviews, 101,
504–515. https://doi.org/10.1016/j.rser.2018.11.033
- O’Malley, J., Pavlenko, N., and Searle, S. (2021). Estimating sustainable aviation fuel feedstock availability
to meet growing European Union demand.https://theicct.org/sites/default/files/publications/Sustainableaviation-
fuel-feedstock-eu-mar2021.pdf
- Palmer, W. (2021). United Flies World’s First Passenger Flight On 100% Sustainable Aviation Fuel Supplying
One of Its Engines. https://www.ge.com/news/reports/united-flies-worlds-first-passenger-flight-on-100-
sustainable-aviation-fuel-supplying-one
- Reuters. (2021). current targets on sustainable aviation fuel “pathetic.”
https://www.reuters.com/business/aerospace-defense/uks-johnson-says-current-targets-sustainable-aviationİbrahim,
- fuel-pathetic-2021-11-02/
- Ribeiro, L. A., Pereira da Silva, P., Ribeiro, L., & Dotti, F. L. (2017). Modelling the impacts of policies on
advanced biofuel feedstocks diffusion. Journal of Cleaner Production, 142, 2471–2479.
https://doi.org/10.1016/j.jclepro.2016.11.027
- Ricardo Energy and Environment. (2020). Targeted Aviation Advanced Biofuels Demonstration Competition
– Feasibility Study Final Report for Department for Transport, UK. https://docslib.org/doc/10188308/targetedaviation-
advanced-biofuels-demonstration-competition-feasibility-study-final-report-report-for-departmentfor-
transport-uk
- Ritchie, H. (2020). Climate change and flying: what share of global CO2 emissions come from aviation?
https://ourworldindata.org/co2-emissions-from-aviation
Schäfer, A. W., Barrett, S. R. H., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., O’Sullivan, A., Synodinos,
- A. P., & Torija, A. J. (2018). Technological, economic and environmental prospects of all-electric aircraft.
Nature Energy, 4(2), 160–166. https://doi.org/10.1038/s41560-018-0294-x
- Scheelhaase, J., Maertens, S., & Grimme, W. (2019). Synthetic fuels in aviation – Current barriers and potential
political measures. Transportation Research Procedia, 43, 21–30. https://doi.org/10.1016/j.trpro.2019.12.015
- Schillo, R. S., Isabelle, D. A., & Shakiba, A. (2017). Linking advanced biofuels policies with stakeholder
interests: A method building on Quality Function Deployment. Energy Policy, 100, 126–137.
https://doi.org/10.1016/j.enpol.2016.09.056
- Seber, G., Malina, R., Pearlson, M. N., Olcay, H., Hileman, J. I., & Barrett, S. R. H. (2014). Environmental
and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass
and Bioenergy, 67, 108–118. https://doi.org/10.1016/j.biombioe.2014.04.024
- Shahabuddin, M., Alam, M. T., Krishna, B. B., Bhaskar, T., & Perkins, G. (2020). A review on the production
of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology,
312, 123596. https://doi.org/10.1016/j.biortech.2020.123596
Shahmardan, A., & Hendijani Zadeh, M. (2013). An integrated approach for solving a MCDM problem,
combination of entropy fuzzy and F-PROMETHEE techniques. Journal of Industrial Engineering and
Management, 6(4), 1124–1138. https://doi.org/10.3926/jiem.899
- Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production
from gasification. Progress in Energy and Combustion Science, 61, 189–248.
https://doi.org/10.1016/j.pecs.2017.04.001
- SkyNRG. (2020). Technology | Sustainable Aviation Fuel. https://skynrg.com/sustainable-aviationfuel/
technology/
Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., & Barrett, S. R. H. (2018). Aviation CO2 emissions
reductions from the use of alternative jet fuels. Energy Policy, 114, 342–354.
https://doi.org/10.1016/j.enpol.2017.12.007
- The Royal Society. (2019). Sustainable synthetic carbon based fuels for transport. https://royalsociety.org/-
/media/policy/projects/synthetic-fuels/synthetic-fuels-briefing.pdf
Timperley, J. (2021). The Fastest Ways Aviation Could Cut Emissions.
https://www.bbc.com/future/article/20210525-how-aviation-is-reducing-its-climate-emissions
- Trejo-Pech, C. O., Larson, J. A., English, B. C., & Yu, T. E. (2019). Cost and Profitability Analysis of a
Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA. Energies, 12(16), 3055.
https://doi.org/10.3390/en12163055
- Trivedi, P., Olcay, H., Staples, M. D., Withers, M. R., Malina, R., & Barrett, S. R. H. (2015). Energy return on
investment for alternative jet fuels. Applied Energy, 141, 167–174.
https://doi.org/10.1016/j.apenergy.2014.12.016
United Nations. (2015). The Paris Agreement. https://www.un.org/en/climatechange/paris-agreement
- US Dept. Of energy. (2020). Sustainable Aviation Fuel Review of Technical Pathways.
https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf
İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024
265
- Wang, Z., Pashaei Kamali, F., Osseweijer, P., & Posada, J. A. (2019). Socioeconomic effects of aviation biofuel
production in Brazil: A scenarios-based Input-Output analysis. Journal of Cleaner Production, 230, 1036–
1050. https://doi.org/10.1016/j.jclepro.2019.05.145
- World Economic Forum. (2020). Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-
Zero Aviation. https://www.weforum.org/reports/clean-skies-for-tomorrow-sustainable-aviation-fuels-as-apathway-
to-net-zero-aviation
- Zemanek, D., Champagne, P., & Mabee, W. (2020). Review of life‐cycle greenhouse‐gas emissions
assessments of hydroprocessed renewable fuel from oilseeds. Biofuels, Bioproducts and Biorefining, 14(5),
935–949. https://doi.org/10.1002/bbb.2125
- Zhang, H., Fang, Y., Wang, M., Appels, L., & Deng, Y. (2020). Prospects and perspectives foster enhanced
research on bio-aviation fuels. Journal of Environmental Management, 274, 111214.
https://doi.org/10.1016/j.jenvman.2020.111214
- Zhang, H., Wang, L., Van herle, J., Maréchal, F., & Desideri, U. (2020). Techno-economic evaluation of
biomass-to-fuels with solid-oxide electrolyzer. Applied Energy, 270, 115113.
https://doi.org/10.1016/j.apenergy.2020.115113
Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach
Year 2024,
Volume: 8 Issue: 1, 241 - 268, 18.07.2024
Ibrahim Temam Ibrahim
,
Ali Osman Kusakci
,
Amna Abdullah
Abstract
Sustainable aviation fuels (SAF) present a feasible solution to decarbonize modern aviation. Unlike traditional jet fuels, SAFs are produced in a variety of ways, thereby choosing one of these processes as a complicated Multi-Criteria Decision challenge that involves conflicting priorities. This study evaluates SAF production processes using a multicriteria methodology, PROMETHEE-2. With SAF technology in its nascent stage and limited data, several stakeholders in the aviation sector were enlisted to assist in the collection of data and preferences. The suggested framework’s strength lies in its adaptability to suit the subjective opinions of diverse stakeholders, selection of ranking system, and robustness of outcomes. This research engaged stakeholders in a participative manner to rank 11 (A1 to A11) SAF production paths based on 24 parameters categorized into social, environmental, economic, and technological evaluation criteria. Industry professionals were given a form to rate SAF production methods according to a performance criterion. Data is validated using fuzzy TOPSIS and fuzzy VIKOR and PROMETHEE-II to reduce professionals’ judgmental personal prejudice. Results indicate the optimal feedstock for SAF production is the direct transition process of CO2 to SAF (A11) in the gasification or Fischer-T synthesis group.
References
- Ahmad, S., Nadeem, A., Akhanova, G., Houghton, T., & Muhammad-Sukki, F. (2017). Multi-criteria
evaluation of renewable and nuclear resources for electricity generation in Kazakhstan. Energy, 141, 1880–
1891. https://doi.org/10.1016/j.energy.2017.11.102
- Alkema, B., R. G. (2022). Aviation’s net-zero ambitions meet resistance in the run-up to COP26 -le.
https://runwaygirlnetwork.com/2021/10/aviations-net-zero-ambitions-meet-resistance-cop26/
- Atag.org. (2022). Air Transport Action Group. (2020, September). Facts and figures. www.atag.org/factsfigures.
HTML
- Atsonios, K., Kougioumtzis, M.-A., D. Panopoulos, K., & Kakaras, E. (2015). Alternative thermochemical
routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and
comparison. Applied Energy, 138, 346–366. https://doi.org/10.1016/j.apenergy.2014.10.056
- aviationbenefits.org. (2022). Air Transport Action Group. (2021). Waypoint 2050.tle.
https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/
Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy
AHP-VIKOR based approach. International Journal of Production Economics, 195, 106–117.
https://doi.org/10.1016/j.ijpe.2017.10.013
- Bann, S. J., Malina, R., Staples, M. D., Suresh, P., Pearlson, M., Tyner, W. E., Hileman, J. I., & Barrett, S.
(2017). The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresource
Technology, 227, 179–187. https://doi.org/10.1016/j.biortech.2016.12.032
- Baudry, G., Macharis, C., & Vallée, T. (2018). Can microalgae biodiesel contribute to achieve the sustainability
objectives in the transport sector in France by 2030? A comparison between first, second and third generation
biofuels though a range-based Multi-Actor Multi-Criteria Analysis. Energy, 155, 1032–1046.
https://doi.org/10.1016/j.energy.2018.05.038
- Brans, J. P., & Vincke, P. (1985). Note—A Preference Ranking Organisation Method. Management Science,
31(6), 647–656. https://doi.org/10.1287/mnsc.31.6.647
CAAFI. (n.d.). Fuel Qualification. (2022b). Retrieved December 13, 2022, from
https://www.caafi.org/focus_areas/feedstocks.html
CAAFI. (2019). Etihad Airways Flies from Abu Dhabi to Amsterdam on AJF Blend from Halophytes.
https://caafi.org/news/NewsItem.aspx?id=10442
C
astello, D., Haider, M. S., & Rosendahl, L. A. (2019). Catalytic upgrading of hydrothermal liquefaction
İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024
262
biocrudes: Different challenges for different feedstocks. Renewable Energy, 141, 420–430.
https://doi.org/10.1016/j.renene.2019.04.003
- Chen, Y.-K., Lin, C.-H., & Wang, W.-C. (2020). The conversion of biomass into renewable jet fuel. Energy,
201, 117655. https://doi.org/10.1016/j.energy.2020.117655
- Cheng, F., & Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkylbenzenes
and cycloalkanes. Renewable and Sustainable Energy Reviews, 72, 673–722.
https://doi.org/10.1016/j.rser.2017.01.030
- Chevron Products Company. (2004). Aviation Fuels Technical Review. https://www.chevron.com/-
/media/chevron/operations/documents/aviation-tech-review.pdf
- Chiaramonti, D. (2019). Sustainable Aviation Fuels: the challenge of decarbonization. Energy Procedia, 158,
1202–1207. https://doi.org/10.1016/j.egypro.2019.01.308
- Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.
https://doi.org/10.1016/j.biotechadv.2007.02.001
- Dayton, D. C., & Foust, T. D. (2020). Alternative Jet Fuels. In Analytical Methods for Biomass
Characterization and Conversion (pp. 147–165). Elsevier. https://doi.org/10.1016/B978-0-12-815605-
6.00010-X
- de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., & Junginger, M. (2015). The feasibility of
short‐term production strategies for renewable jet fuels – a comprehensive techno‐economic comparison.
Biofuels, Bioproducts and Biorefining, 9(6), 778–800. https://doi.org/10.1002/bbb.1613
- Diederichs, G. W., Ali Mandegari, M., Farzad, S., & Görgens, J. F. (2016). Techno-economic comparison of
biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource Technology, 216,
331–339. https://doi.org/10.1016/j.biortech.2016.05.090
- Dožić, S. (2019). Multi-criteria decision making methods: Application in the aviation industry. Journal of Air
Transport Management, 79, 101683. https://doi.org/10.1016/j.jairtraman.2019.101683
- Dyk, S. van. E. C. R. (2021). ReFuelEU Aviation proposal details SAF blending obligation on fuel suppliers.
https://www.greenairnews.com/?p=1374
- Efroymson, R. A., Dale, V. H., & Langholtz, M. H. (2017). Socioeconomic indicators for sustainable design
and commercial development of algal biofuel systems. GCB Bioenergy, 9(6), 1005–1023.
https://doi.org/10.1111/gcbb.12359
- Fiorese, G., Catenacci, M., Verdolini, E., & Bosetti, V. (2013). Advanced biofuels: Future perspectives from
an expert elicitation survey. Energy Policy, 56, 293–311. https://doi.org/10.1016/j.enpol.2012.12.061
- Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of
bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82.
https://doi.org/10.1016/j.apenergy.2014.01.077
- Ganguly, I., Pierobon, F., Bowers, T. C., Huisenga, M., Johnston, G., & Eastin, I. L. (2018). ‘Woods-to-Wake’
Life Cycle Assessment of residual woody biomass based jet-fuel using mild bisulfite pretreatment. Biomass
and Bioenergy, 108, 207–216. https://doi.org/10.1016/j.biombioe.2017.10.041
- Gegg, P., & Wells, V. (2017). UK Macro-Algae Biofuels: A Strategic Management Review and Future
Research Agenda. Journal of Marine Science and Engineering, 5(3), 32. https://doi.org/10.3390/jmse5030032
- Geleynse, S., Jiang, Z., Brandt, K., Garcia-Perez, M., Wolcott, M., & Zhang, X. (2020). Pulp mill integration
with alcohol-to-jet conversion technology. Fuel Processing Technology, 201, 106338.
https://doi.org/10.1016/j.fuproc.2020.106338
- Heyne, J., Rauch, B., Le Clercq, P., & Colket, M. (2021). Sustainable aviation fuel prescreening tools and
procedures. Fuel, 290, 120004. https://doi.org/10.1016/j.fuel.2020.120004
- Hileman, J. I., & Stratton, R. W. (2014). Alternative jet fuel feasibility. Transport Policy, 34, 52–62.
https://doi.org/10.1016/j.tranpol.2014.02.018
- IATA. (2019). Sustainable Aviation Fuels Fact sheet.
https://www.iata.org/contentassets/ed476ad1a80f4ec7949204e0d9e34a7f/fact-sheet-alternative-fuels.pdf.
- ICAO. (2016). Environmental Report. www.icao.int/environmental-protection/Pages/env2016.aspx.
- ICAO. (2022). Sustainable Aviation Fuels (SAF). www.icao.int/environmental-protection/pages/SAF.aspx
- EA. (2022). Aviation – Analysis. https://www.iea.org/reports/aviation
- International Civil Aviation Organization. (2019). Trends in Emissions that Affect Climate Change.
https://www.icao.int/environmental-protection/Pages/ClimateChange_Trends.aspx
- International Civil Aviation Organization. (2022). COVID-19 impacts and 2022 CORSIA periodic review.
https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-and-Covid-19.aspx
- International Civil Aviation Organization. (2021). https://bit.ly/3ruI5p8
- Kivits, R., Charles, M. B., & Ryan, N. (2010). A post-carbon aviation future: Airports and the transition to a
cleaner aviation sector. Futures, 42(3), 199–211. https://doi.org/10.1016/j.futures.2009.11.005
- Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardoso, T. de F., Cavalett, O., & Bonomi,
A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated
Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305.
https://doi.org/10.1016/j.apenergy.2017.10.079
- Kolosz, B. W., Luo, Y., Xu, B., Maroto-Valer, M. M., & Andresen, J. M. (2020). Life cycle environmental
analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy & Fuels, 4(7), 3229–3263.
https://doi.org/10.1039/C9SE00788A
- Lanzini, P., Testa, F., & Iraldo, F. (2016). Factors affecting drivers’ willingness to pay for biofuels: the case
of Italy. Journal of Cleaner Production, 112, 2684–2692. https://doi.org/10.1016/j.jclepro.2015.10.080
- Li, X., Mupondwa, E., & Tabil, L. (2018). Technoeconomic analysis of biojet fuel production from camelina
at commercial scale: Case of Canadian Prairies. Bioresource Technology, 249, 196–205.
https://doi.org/10.1016/j.biortech.2017.09.183
- Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E., & Nalianda, D. (2015). Life cycle greenhouse gas analysis
of biojet fuels with a technical investigation into their impact on jet engine performance. Biomass and
Bioenergy, 77, 26–44. https://doi.org/10.1016/j.biombioe.2015.03.005
- Michailos, S. (2018). Process design, economic evaluation and life cycle assessment of jet fuel production
from sugar cane residue. Environmental Progress & Sustainable Energy, 37(3), 1227–1235.
https://doi.org/10.1002/ep.12840
- Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., & Aminul Islam, A. K. M. (2017). Jatropha
Biofuel Industry: The Challenges. In Frontiers in Bioenergy and Biofuels. InTech.
https://doi.org/10.5772/64979
- Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D’Ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M.,
Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
- D., Shook, M., Slover, G., … Anderson, B. E. (2017). Biofuel blending reduces particle emissions from aircraft
engines at cruise conditions. Nature, 543(7645), 411–415. https://doi.org/10.1038/nature21420
- Neuling, U., & Kaltschmitt, M. (2018). Techno-economic and environmental analysis of aviation biofuels.
Fuel Processing Technology, 171, 54–69. https://doi.org/10.1016/j.fuproc.2017.09.022
- O’Connell, A., Kousoulidou, M., Lonza, L., & Weindorf, W. (2019). Considerations on GHG emissions and
energy balances of promising aviation biofuel pathways. Renewable and Sustainable Energy Reviews, 101,
504–515. https://doi.org/10.1016/j.rser.2018.11.033
- O’Malley, J., Pavlenko, N., and Searle, S. (2021). Estimating sustainable aviation fuel feedstock availability
to meet growing European Union demand.https://theicct.org/sites/default/files/publications/Sustainableaviation-
fuel-feedstock-eu-mar2021.pdf
- Palmer, W. (2021). United Flies World’s First Passenger Flight On 100% Sustainable Aviation Fuel Supplying
One of Its Engines. https://www.ge.com/news/reports/united-flies-worlds-first-passenger-flight-on-100-
sustainable-aviation-fuel-supplying-one
- Reuters. (2021). current targets on sustainable aviation fuel “pathetic.”
https://www.reuters.com/business/aerospace-defense/uks-johnson-says-current-targets-sustainable-aviationİbrahim,
- fuel-pathetic-2021-11-02/
- Ribeiro, L. A., Pereira da Silva, P., Ribeiro, L., & Dotti, F. L. (2017). Modelling the impacts of policies on
advanced biofuel feedstocks diffusion. Journal of Cleaner Production, 142, 2471–2479.
https://doi.org/10.1016/j.jclepro.2016.11.027
- Ricardo Energy and Environment. (2020). Targeted Aviation Advanced Biofuels Demonstration Competition
– Feasibility Study Final Report for Department for Transport, UK. https://docslib.org/doc/10188308/targetedaviation-
advanced-biofuels-demonstration-competition-feasibility-study-final-report-report-for-departmentfor-
transport-uk
- Ritchie, H. (2020). Climate change and flying: what share of global CO2 emissions come from aviation?
https://ourworldindata.org/co2-emissions-from-aviation
Schäfer, A. W., Barrett, S. R. H., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., O’Sullivan, A., Synodinos,
- A. P., & Torija, A. J. (2018). Technological, economic and environmental prospects of all-electric aircraft.
Nature Energy, 4(2), 160–166. https://doi.org/10.1038/s41560-018-0294-x
- Scheelhaase, J., Maertens, S., & Grimme, W. (2019). Synthetic fuels in aviation – Current barriers and potential
political measures. Transportation Research Procedia, 43, 21–30. https://doi.org/10.1016/j.trpro.2019.12.015
- Schillo, R. S., Isabelle, D. A., & Shakiba, A. (2017). Linking advanced biofuels policies with stakeholder
interests: A method building on Quality Function Deployment. Energy Policy, 100, 126–137.
https://doi.org/10.1016/j.enpol.2016.09.056
- Seber, G., Malina, R., Pearlson, M. N., Olcay, H., Hileman, J. I., & Barrett, S. R. H. (2014). Environmental
and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass
and Bioenergy, 67, 108–118. https://doi.org/10.1016/j.biombioe.2014.04.024
- Shahabuddin, M., Alam, M. T., Krishna, B. B., Bhaskar, T., & Perkins, G. (2020). A review on the production
of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology,
312, 123596. https://doi.org/10.1016/j.biortech.2020.123596
Shahmardan, A., & Hendijani Zadeh, M. (2013). An integrated approach for solving a MCDM problem,
combination of entropy fuzzy and F-PROMETHEE techniques. Journal of Industrial Engineering and
Management, 6(4), 1124–1138. https://doi.org/10.3926/jiem.899
- Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production
from gasification. Progress in Energy and Combustion Science, 61, 189–248.
https://doi.org/10.1016/j.pecs.2017.04.001
- SkyNRG. (2020). Technology | Sustainable Aviation Fuel. https://skynrg.com/sustainable-aviationfuel/
technology/
Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., & Barrett, S. R. H. (2018). Aviation CO2 emissions
reductions from the use of alternative jet fuels. Energy Policy, 114, 342–354.
https://doi.org/10.1016/j.enpol.2017.12.007
- The Royal Society. (2019). Sustainable synthetic carbon based fuels for transport. https://royalsociety.org/-
/media/policy/projects/synthetic-fuels/synthetic-fuels-briefing.pdf
Timperley, J. (2021). The Fastest Ways Aviation Could Cut Emissions.
https://www.bbc.com/future/article/20210525-how-aviation-is-reducing-its-climate-emissions
- Trejo-Pech, C. O., Larson, J. A., English, B. C., & Yu, T. E. (2019). Cost and Profitability Analysis of a
Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA. Energies, 12(16), 3055.
https://doi.org/10.3390/en12163055
- Trivedi, P., Olcay, H., Staples, M. D., Withers, M. R., Malina, R., & Barrett, S. R. H. (2015). Energy return on
investment for alternative jet fuels. Applied Energy, 141, 167–174.
https://doi.org/10.1016/j.apenergy.2014.12.016
United Nations. (2015). The Paris Agreement. https://www.un.org/en/climatechange/paris-agreement
- US Dept. Of energy. (2020). Sustainable Aviation Fuel Review of Technical Pathways.
https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf
İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024
265
- Wang, Z., Pashaei Kamali, F., Osseweijer, P., & Posada, J. A. (2019). Socioeconomic effects of aviation biofuel
production in Brazil: A scenarios-based Input-Output analysis. Journal of Cleaner Production, 230, 1036–
1050. https://doi.org/10.1016/j.jclepro.2019.05.145
- World Economic Forum. (2020). Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-
Zero Aviation. https://www.weforum.org/reports/clean-skies-for-tomorrow-sustainable-aviation-fuels-as-apathway-
to-net-zero-aviation
- Zemanek, D., Champagne, P., & Mabee, W. (2020). Review of life‐cycle greenhouse‐gas emissions
assessments of hydroprocessed renewable fuel from oilseeds. Biofuels, Bioproducts and Biorefining, 14(5),
935–949. https://doi.org/10.1002/bbb.2125
- Zhang, H., Fang, Y., Wang, M., Appels, L., & Deng, Y. (2020). Prospects and perspectives foster enhanced
research on bio-aviation fuels. Journal of Environmental Management, 274, 111214.
https://doi.org/10.1016/j.jenvman.2020.111214
- Zhang, H., Wang, L., Van herle, J., Maréchal, F., & Desideri, U. (2020). Techno-economic evaluation of
biomass-to-fuels with solid-oxide electrolyzer. Applied Energy, 270, 115113.
https://doi.org/10.1016/j.apenergy.2020.115113