Research Article
BibTex RIS Cite

TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG'S SENSE

Year 2019, Volume: 2 Issue: 2, 144 - 153, 29.07.2019
https://doi.org/10.33773/jum.522688

Abstract

Abstract. In this paper, the concepts of temporal and overall intuitionistic
fuzzy topology in Chang sense is introduced and investigated some properties
of these concepts. Furthermore, we give fundamental denitions related to
this topology as temporal and overall aspects. We also examine the relation-
ship between this topology and the temporal and overall intuitionistic fuzzy
topology in Sostak's sense.

References

  • A.Sostak, On a fuzzy topological structure. Rend Circ. Mat. Palermo Supp., Vol. 11,pp. 89-103(1985).
  • C. L. Chang, Fuzzy topological spaces. J. Math Ana. Appl.,Vol. 24, 182{190.(1968)
  • D. Çoker and M. Demirci , An introduction to intuitionistic topological spaces in Sostak's sense. BUSEFAL, Vol. 67,pp. 67{76 (1996)
  • D. Çoker, An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systemsVol. 88, N. 1, pp. 81-89 (1997)
  • F.Kutlu, O. Atan and T. Bilgin, Distance measure, similarity measure, entropy and inclusionmeasure for temporal intuitionistic fuzzy sets. In: Proceedings of IFSCOM'2016, Mersin/Turkey,pp.130{148 (2016)
  • F. Kutlu ,T. Bilgin , Temporal intuitionistic fuzzy topology in Sostak's sense. Notes on Intu-itionistic Fuzzy Sets, Vol. 21 N.2, pp. 63{70, (2015)
  • F.Kutlu , A. A. Ramadan ,T. Bilgin, On compactness in temporal intuitionistic fuzzy Sostaktopology, Notes on Intuitionistic Fuzzy Sets, Vol 22, N. 5, pp. 46{62.(2016).
  • K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96(1986)
  • K. T. Atanassov, Temporal intuitionistic fuzzy sets. Comptes Rendus de l'Academie Bul-gare,Vol. 44, N.7,pp. 5{7 (1991)
  • S. K. Samanta , T. K.Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topol-ogy. BUSEFAL, Vol. 73,pp. 8-17 (1997)
  • R. Lowen, Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysisand Applications, Vol. 56, N.3,pp. 621-633 (1976)
  • S. J. Lee, E. P. Lee, The category of intuitionistic fuzzy topological spaces. Bulletin of theKorean Mathematical Society, Vol 37, N.1,pp. 63-76 (2000).
  • S. Yılmaz, G. Çuvalcıoğlu, On level operators for temporal intuitionistic fuzzy sets. Notes onIntuitionistic Fuzzy Sets, Vol. 20, N.2,pp. 6{15 (2014)
Year 2019, Volume: 2 Issue: 2, 144 - 153, 29.07.2019
https://doi.org/10.33773/jum.522688

Abstract

References

  • A.Sostak, On a fuzzy topological structure. Rend Circ. Mat. Palermo Supp., Vol. 11,pp. 89-103(1985).
  • C. L. Chang, Fuzzy topological spaces. J. Math Ana. Appl.,Vol. 24, 182{190.(1968)
  • D. Çoker and M. Demirci , An introduction to intuitionistic topological spaces in Sostak's sense. BUSEFAL, Vol. 67,pp. 67{76 (1996)
  • D. Çoker, An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systemsVol. 88, N. 1, pp. 81-89 (1997)
  • F.Kutlu, O. Atan and T. Bilgin, Distance measure, similarity measure, entropy and inclusionmeasure for temporal intuitionistic fuzzy sets. In: Proceedings of IFSCOM'2016, Mersin/Turkey,pp.130{148 (2016)
  • F. Kutlu ,T. Bilgin , Temporal intuitionistic fuzzy topology in Sostak's sense. Notes on Intu-itionistic Fuzzy Sets, Vol. 21 N.2, pp. 63{70, (2015)
  • F.Kutlu , A. A. Ramadan ,T. Bilgin, On compactness in temporal intuitionistic fuzzy Sostaktopology, Notes on Intuitionistic Fuzzy Sets, Vol 22, N. 5, pp. 46{62.(2016).
  • K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96(1986)
  • K. T. Atanassov, Temporal intuitionistic fuzzy sets. Comptes Rendus de l'Academie Bul-gare,Vol. 44, N.7,pp. 5{7 (1991)
  • S. K. Samanta , T. K.Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topol-ogy. BUSEFAL, Vol. 73,pp. 8-17 (1997)
  • R. Lowen, Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysisand Applications, Vol. 56, N.3,pp. 621-633 (1976)
  • S. J. Lee, E. P. Lee, The category of intuitionistic fuzzy topological spaces. Bulletin of theKorean Mathematical Society, Vol 37, N.1,pp. 63-76 (2000).
  • S. Yılmaz, G. Çuvalcıoğlu, On level operators for temporal intuitionistic fuzzy sets. Notes onIntuitionistic Fuzzy Sets, Vol. 20, N.2,pp. 6{15 (2014)
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Fatih Kutlu 0000-0002-1731-9558

Publication Date July 29, 2019
Submission Date February 5, 2019
Acceptance Date December 3, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Kutlu, F. (2019). TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics, 2(2), 144-153. https://doi.org/10.33773/jum.522688
AMA Kutlu F. TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. July 2019;2(2):144-153. doi:10.33773/jum.522688
Chicago Kutlu, Fatih. “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 2, no. 2 (July 2019): 144-53. https://doi.org/10.33773/jum.522688.
EndNote Kutlu F (July 1, 2019) TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics 2 2 144–153.
IEEE F. Kutlu, “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”, JUM, vol. 2, no. 2, pp. 144–153, 2019, doi: 10.33773/jum.522688.
ISNAD Kutlu, Fatih. “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 2/2 (July 2019), 144-153. https://doi.org/10.33773/jum.522688.
JAMA Kutlu F. TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2019;2:144–153.
MLA Kutlu, Fatih. “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics, vol. 2, no. 2, 2019, pp. 144-53, doi:10.33773/jum.522688.
Vancouver Kutlu F. TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2019;2(2):144-53.