Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 222 - 229, 31.07.2021
https://doi.org/10.33773/jum.952394

Abstract

References

  • Y. Alagöz, E. Büyükaşık, On max-flat and max-cotorsion modules. AAECC 32, (2021), 195–215.
  • F. W. Anderson, K. R. Fuller, Rings and Categories of Modules. 2nd ed. Grad. Texts in Math., Vol. 13. Berlin: Springer-Verlag. (1992).
  • G. Azumaya, Finite splitness and finite projectivity. J. Algebra, 106, (1987), 114-134.
  • E. Büyükaşık, Y. Durğun, Neat-flat modules. Comm. Algebra, 44(1), (2016), 416-428.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules. Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006.
  • S. Crivei, Neat and coneat submodules of modules over commutative rings. Bull. Aust. Math. Soc. 89(2), (2014), 343-352.
  • A. Moradzadeh-Dehkordi and S. H. Shojaee, Singly injective modules, J. Algebra Appl. 18(1), (2019), 1950007, 20.
  • N. V. Dung, D.V. Huynh, P. F. Smith and R. Wisbauer, Extending modules, Putman Research Notes in Mathematics Series, Longman, Harlow, 1994.
  • Y. Durğun, Projectivity relative to closed (neat) submodules. J. Algebra Appl., (2021) DOI: 10.1142/S0219498822501146.
  • C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191.
  • V. A. Hiremath, S. S. Gramopadhye, Cyclic Pure Submodules. Int. J. Alg., 3(3), (2009), 125-135.
  • D. V. Huynh and P. Dan, On rings with restricted minimum condition. Arch. Math.(Basel), 51, (1988), 313-326.
  • B.H. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18, (1967), 155–158.
  • L. Mao and N. Ding, New characterizations of pseudo-coherent rings, Forum Math. 22, (2010), 993–1008.
  • L. Mao, A generalization of noetherian rings. Taiwanese J. Math., 12(2), (2008), 501-512.
  • G. Renault, Etude de certains anneaux a lies aux sous-modules complements dun a-module, C. R. Acad. Sci. Paris, 259, (1964), 4203-4205.
  • S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Noncommutative ring theory (Athens, OH, 1989), 1990, pp. 116-124.
  • J. J. Rotman, An Introduction to Homological Algebra, in Pure Appl.Math., Vol. 85, Academic Press, New York, (1979).
  • G. Simmons, Cyclic-purity: a generalization of purity for modules. Houston J. Math., 13(1), (1987), 135-150.
  • Sklyarenko, E. G. 1978. Relative Homological Algebra in Categories of Modules. Russian Math. Surveys 33(3):97-137. Translated from Russian from Uspehi Mat. Nauk 33(201):85-120.
  • B. Stenström, High submodules and purity. Arkiv för Matematik, 7(11), (1967), 173-176.
  • R.B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28, (1969), 699-719.
  • H. Zöschinger, Schwach-Flache moduln. Comm. Algebra, 41 (12), (2013) 4393-4407.

C-PURE SUBMODULES AND C-FLAT MODULES

Year 2021, Volume: 4 Issue: 2, 222 - 229, 31.07.2021
https://doi.org/10.33773/jum.952394

Abstract

Let R be a ring. A right R-module A is said to be C-flat if the kernel of any epimorphism B → A is C-pure in B, i.e. the induced map Hom(C,B) → Hom(C,A) is surjective for any cyclic right R-module C. Projective modules are C-flat and C-flat modules are weakly-flat and neat-flat. In this article, it is discussed the connections between C-flat, weakly-flat, neat-flat and singly flat modules. It is shown that C-flat modules coincide with singly-projective modules over arbitrary rings. Next, several characterizations of certain classes of rings and modules via C-purity are considered. We prove that, every C-flat module is injective if and only if R is a QF ring. Moreover, we show that R is a CF ring if and only if every FP-injective right R-module is C-flat.

References

  • Y. Alagöz, E. Büyükaşık, On max-flat and max-cotorsion modules. AAECC 32, (2021), 195–215.
  • F. W. Anderson, K. R. Fuller, Rings and Categories of Modules. 2nd ed. Grad. Texts in Math., Vol. 13. Berlin: Springer-Verlag. (1992).
  • G. Azumaya, Finite splitness and finite projectivity. J. Algebra, 106, (1987), 114-134.
  • E. Büyükaşık, Y. Durğun, Neat-flat modules. Comm. Algebra, 44(1), (2016), 416-428.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules. Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006.
  • S. Crivei, Neat and coneat submodules of modules over commutative rings. Bull. Aust. Math. Soc. 89(2), (2014), 343-352.
  • A. Moradzadeh-Dehkordi and S. H. Shojaee, Singly injective modules, J. Algebra Appl. 18(1), (2019), 1950007, 20.
  • N. V. Dung, D.V. Huynh, P. F. Smith and R. Wisbauer, Extending modules, Putman Research Notes in Mathematics Series, Longman, Harlow, 1994.
  • Y. Durğun, Projectivity relative to closed (neat) submodules. J. Algebra Appl., (2021) DOI: 10.1142/S0219498822501146.
  • C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191.
  • V. A. Hiremath, S. S. Gramopadhye, Cyclic Pure Submodules. Int. J. Alg., 3(3), (2009), 125-135.
  • D. V. Huynh and P. Dan, On rings with restricted minimum condition. Arch. Math.(Basel), 51, (1988), 313-326.
  • B.H. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18, (1967), 155–158.
  • L. Mao and N. Ding, New characterizations of pseudo-coherent rings, Forum Math. 22, (2010), 993–1008.
  • L. Mao, A generalization of noetherian rings. Taiwanese J. Math., 12(2), (2008), 501-512.
  • G. Renault, Etude de certains anneaux a lies aux sous-modules complements dun a-module, C. R. Acad. Sci. Paris, 259, (1964), 4203-4205.
  • S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Noncommutative ring theory (Athens, OH, 1989), 1990, pp. 116-124.
  • J. J. Rotman, An Introduction to Homological Algebra, in Pure Appl.Math., Vol. 85, Academic Press, New York, (1979).
  • G. Simmons, Cyclic-purity: a generalization of purity for modules. Houston J. Math., 13(1), (1987), 135-150.
  • Sklyarenko, E. G. 1978. Relative Homological Algebra in Categories of Modules. Russian Math. Surveys 33(3):97-137. Translated from Russian from Uspehi Mat. Nauk 33(201):85-120.
  • B. Stenström, High submodules and purity. Arkiv för Matematik, 7(11), (1967), 173-176.
  • R.B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28, (1969), 699-719.
  • H. Zöschinger, Schwach-Flache moduln. Comm. Algebra, 41 (12), (2013) 4393-4407.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Yusuf Alagöz 0000-0002-2535-4679

Publication Date July 31, 2021
Submission Date June 14, 2021
Acceptance Date July 29, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Alagöz, Y. (2021). C-PURE SUBMODULES AND C-FLAT MODULES. Journal of Universal Mathematics, 4(2), 222-229. https://doi.org/10.33773/jum.952394
AMA Alagöz Y. C-PURE SUBMODULES AND C-FLAT MODULES. JUM. July 2021;4(2):222-229. doi:10.33773/jum.952394
Chicago Alagöz, Yusuf. “C-PURE SUBMODULES AND C-FLAT MODULES”. Journal of Universal Mathematics 4, no. 2 (July 2021): 222-29. https://doi.org/10.33773/jum.952394.
EndNote Alagöz Y (July 1, 2021) C-PURE SUBMODULES AND C-FLAT MODULES. Journal of Universal Mathematics 4 2 222–229.
IEEE Y. Alagöz, “C-PURE SUBMODULES AND C-FLAT MODULES”, JUM, vol. 4, no. 2, pp. 222–229, 2021, doi: 10.33773/jum.952394.
ISNAD Alagöz, Yusuf. “C-PURE SUBMODULES AND C-FLAT MODULES”. Journal of Universal Mathematics 4/2 (July 2021), 222-229. https://doi.org/10.33773/jum.952394.
JAMA Alagöz Y. C-PURE SUBMODULES AND C-FLAT MODULES. JUM. 2021;4:222–229.
MLA Alagöz, Yusuf. “C-PURE SUBMODULES AND C-FLAT MODULES”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 222-9, doi:10.33773/jum.952394.
Vancouver Alagöz Y. C-PURE SUBMODULES AND C-FLAT MODULES. JUM. 2021;4(2):222-9.