[2] D.M. Kan, A combinatorial definition of homotopy groups , Annals of Maths. 61, 288312, 1958.
[3] D. Conduch, Modules croiss gnraliss de longueur 2, J. Pure and Applied Algebra , 34,(1984), 155-178.
[4] G.J.Ellis,Homotopical aspects of Lie algebras, J. Austral. Math. Soc. (Series A),54, (1993), 393-419.
[5] A. Grothendieck, Catgories cobress additives et complexe cotangent relatif. In: Lecture Notes in Mathematics, vol. 79. Springer, Berlin (1968).
[6] D. Guin-Walery and J-L. Loday, Obsructiona l'excision en K-theorie algebrique, in: Algebraic K-Theory (Evanston 1980). Lecture Notes in Math. (1981), 179-216 (1981).
[7] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter, 15, 1991.
[8] I. Aka and Z. Arvasi, Simplicial and crossed Lie algebras, Homology, Homotopy andApplications, Vol. 4 No.(1), (2002) ,43-57.
[9] Z. Arvasi and E. Ulualan, : Quadratic and 2-crossed modules of algebras. Algebra Colloquium. (14), 669-686 (2007).
[10] E.Ulualan and E.. Uslu, ,Quadratic modules for Lie algebras, Hacettepe Journal of Mathematics and Statistics, Vol40, (3), (2010), 409-419.
[11] H. Atik and E. Ulualan,Quadratic modules bibred over nil (2)-modules, Journal of Homotopy and Related Structures, 121, (2017), 83-108.
[12] K. Ylmaz,aprazlanm Kareler iin Bir Fibrasyon Uygulamas, Cumhuriyet Science Journal 391, (2018): 1-6.[13] K. Ylmaz and E.S. Ylmaz, Baues cobration for quadratic modules of Lie algebras, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, Vol 682, (2019), 1653-1663.
[14] E.S. Ylmaz and K. Ylmaz On Crossed Squares of Commutative Algebras, Math. Sci. Appl. E-Notes, 82, (2020), 32-41.
[15] M. Gerstenhaber, A uniform cohomology theory for algebras, Proceedings
QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS
Year 2022,
Volume: 5 Issue: 2, 68 - 75, 31.07.2022
[2] D.M. Kan, A combinatorial definition of homotopy groups , Annals of Maths. 61, 288312, 1958.
[3] D. Conduch, Modules croiss gnraliss de longueur 2, J. Pure and Applied Algebra , 34,(1984), 155-178.
[4] G.J.Ellis,Homotopical aspects of Lie algebras, J. Austral. Math. Soc. (Series A),54, (1993), 393-419.
[5] A. Grothendieck, Catgories cobress additives et complexe cotangent relatif. In: Lecture Notes in Mathematics, vol. 79. Springer, Berlin (1968).
[6] D. Guin-Walery and J-L. Loday, Obsructiona l'excision en K-theorie algebrique, in: Algebraic K-Theory (Evanston 1980). Lecture Notes in Math. (1981), 179-216 (1981).
[7] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter, 15, 1991.
[8] I. Aka and Z. Arvasi, Simplicial and crossed Lie algebras, Homology, Homotopy andApplications, Vol. 4 No.(1), (2002) ,43-57.
[9] Z. Arvasi and E. Ulualan, : Quadratic and 2-crossed modules of algebras. Algebra Colloquium. (14), 669-686 (2007).
[10] E.Ulualan and E.. Uslu, ,Quadratic modules for Lie algebras, Hacettepe Journal of Mathematics and Statistics, Vol40, (3), (2010), 409-419.
[11] H. Atik and E. Ulualan,Quadratic modules bibred over nil (2)-modules, Journal of Homotopy and Related Structures, 121, (2017), 83-108.
[12] K. Ylmaz,aprazlanm Kareler iin Bir Fibrasyon Uygulamas, Cumhuriyet Science Journal 391, (2018): 1-6.[13] K. Ylmaz and E.S. Ylmaz, Baues cobration for quadratic modules of Lie algebras, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, Vol 682, (2019), 1653-1663.
[14] E.S. Ylmaz and K. Ylmaz On Crossed Squares of Commutative Algebras, Math. Sci. Appl. E-Notes, 82, (2020), 32-41.
[15] M. Gerstenhaber, A uniform cohomology theory for algebras, Proceedings
Taşbozan, H., & Güzelkokar, A. (2022). QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS. Journal of Universal Mathematics, 5(2), 68-75. https://doi.org/10.33773/jum.1089354
AMA
Taşbozan H, Güzelkokar A. QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS. JUM. July 2022;5(2):68-75. doi:10.33773/jum.1089354
Chicago
Taşbozan, Hatice, and Aydın Güzelkokar. “QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS”. Journal of Universal Mathematics 5, no. 2 (July 2022): 68-75. https://doi.org/10.33773/jum.1089354.
EndNote
Taşbozan H, Güzelkokar A (July 1, 2022) QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS. Journal of Universal Mathematics 5 2 68–75.
IEEE
H. Taşbozan and A. Güzelkokar, “QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS”, JUM, vol. 5, no. 2, pp. 68–75, 2022, doi: 10.33773/jum.1089354.
ISNAD
Taşbozan, Hatice - Güzelkokar, Aydın. “QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS”. Journal of Universal Mathematics 5/2 (July 2022), 68-75. https://doi.org/10.33773/jum.1089354.
JAMA
Taşbozan H, Güzelkokar A. QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS. JUM. 2022;5:68–75.
MLA
Taşbozan, Hatice and Aydın Güzelkokar. “QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS”. Journal of Universal Mathematics, vol. 5, no. 2, 2022, pp. 68-75, doi:10.33773/jum.1089354.
Vancouver
Taşbozan H, Güzelkokar A. QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES OF LIE ALGEBRAS. JUM. 2022;5(2):68-75.