Research Article
BibTex RIS Cite

A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD

Year 2022, Volume: 5 Issue: 2, 117 - 121, 31.07.2022
https://doi.org/10.33773/jum.1134272

Abstract

The present study initially introduced a new type Lorentzian almost para contact manifold using the generalized symmetric metric connections of type $(\alpha,\beta)$. Later, some results is given about new type Lorentzian almost para contact manifold.
\end{abstract}

References

  • [1] N. S. Agashe and M. R. Chae, A semi symetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.
  • [2] O. Bahadir, S. K. Chaubey, Some notes on LP-Sasakian manifolds with generalized symmetric metric connection, Honam Mathematical J., 42(2) (2020), 461-476.
  • [3] O. Bahadir, M. A. Choudhary and S. Pandey, LP-Sasakian manifolds with generalized symmetric metric connection, Novi Sad J. Math. 51(2) (2021), 75-87.
  • [4] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor N. S. 29 (1975), 249-254.
  • [5] H. A. Hayden, Subspaces of a space with torsion, London Math. Soc. 34 (1932), 27-50.
  • [6] K. Matsumoto, On Lorentzian Paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(2) (1989), 151-156.
  • [7] K. Matsumoto and I. Mihai On a certain transformation in a Lorentzian para Sasakian manifold, Tensor N. S. 47 (1988), 189-197.
  • [8] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Clssical Analysis,World Scientific Publ. 1992, 155-169.
Year 2022, Volume: 5 Issue: 2, 117 - 121, 31.07.2022
https://doi.org/10.33773/jum.1134272

Abstract

References

  • [1] N. S. Agashe and M. R. Chae, A semi symetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.
  • [2] O. Bahadir, S. K. Chaubey, Some notes on LP-Sasakian manifolds with generalized symmetric metric connection, Honam Mathematical J., 42(2) (2020), 461-476.
  • [3] O. Bahadir, M. A. Choudhary and S. Pandey, LP-Sasakian manifolds with generalized symmetric metric connection, Novi Sad J. Math. 51(2) (2021), 75-87.
  • [4] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor N. S. 29 (1975), 249-254.
  • [5] H. A. Hayden, Subspaces of a space with torsion, London Math. Soc. 34 (1932), 27-50.
  • [6] K. Matsumoto, On Lorentzian Paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(2) (1989), 151-156.
  • [7] K. Matsumoto and I. Mihai On a certain transformation in a Lorentzian para Sasakian manifold, Tensor N. S. 47 (1988), 189-197.
  • [8] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Clssical Analysis,World Scientific Publ. 1992, 155-169.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Oğuzhan Bahadır 0000-0001-5054-8865

Publication Date July 31, 2022
Submission Date June 22, 2022
Acceptance Date July 27, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Bahadır, O. (2022). A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD. Journal of Universal Mathematics, 5(2), 117-121. https://doi.org/10.33773/jum.1134272
AMA Bahadır O. A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD. JUM. July 2022;5(2):117-121. doi:10.33773/jum.1134272
Chicago Bahadır, Oğuzhan. “A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD”. Journal of Universal Mathematics 5, no. 2 (July 2022): 117-21. https://doi.org/10.33773/jum.1134272.
EndNote Bahadır O (July 1, 2022) A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD. Journal of Universal Mathematics 5 2 117–121.
IEEE O. Bahadır, “A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD”, JUM, vol. 5, no. 2, pp. 117–121, 2022, doi: 10.33773/jum.1134272.
ISNAD Bahadır, Oğuzhan. “A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD”. Journal of Universal Mathematics 5/2 (July 2022), 117-121. https://doi.org/10.33773/jum.1134272.
JAMA Bahadır O. A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD. JUM. 2022;5:117–121.
MLA Bahadır, Oğuzhan. “A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD”. Journal of Universal Mathematics, vol. 5, no. 2, 2022, pp. 117-21, doi:10.33773/jum.1134272.
Vancouver Bahadır O. A NEW TYPE LORENTZIAN ALMOST PARA CONTACT MANIFOLD. JUM. 2022;5(2):117-21.