Research Article
BibTex RIS Cite

ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES

Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 128 - 137, 29.12.2024
https://doi.org/10.33773/jum.1518403

Abstract

This study explores the formation of polynomials of at most degree $n$ using the first $n+1$ terms of the Jacobsthal and Jacobsthal-Lucas sequences through Lagrange interpolation. The paper provides a detailed examination of the recurrence relations and various identities associated with the Jacobsthal and Jacobsthal-Lucas Lagrange Interpolation Polynomials.

References

  • M. Asci, E. GUrel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers, Ars Combinatoria, Vol.5, No.111, pp.53-62 (2013).
  • P. Catarino, P. Vasco, H. Campos, A. P. Aires, A. Borges, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra and Discrete Mathematics, vol.20, No.1, (2015).
  • G. Cerda-Morales, On bicomplex third-order Jacobsthal numbers, Complex Variables and Elliptic Equations, Vol.68, No.1, pp.44-56 (2023).
  • C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. In Annales mathematicae et informaticae, pp. 27-39 (2013).
  • C. B. Cimen, A. Ipek, On jacobsthal and jacobsthal–lucas octonions, Mediterranean Journal of Mathematics, Vol.14, pp.1-13 (2017).
  • A. DaSdemir, On the Jacobsthal numbers by matrix method. SUleyman Demirel University Faculty of Arts and Science Journal of Science, vol.7, No.1, pp.69-76 (2012).
  • O. Deveci and G. Artun, On the adjacency-Jacobsthal numbers, Communications in Algebra, vol.47, No.11, pp.4520-4532 (2019).
  • C. M. Dikmen, Hyperbolic jacobsthal numbers, Asian Research Journal of Mathematics, Vol.15, No.4, pp.1-9 (2019). O. Diskaya, H. Menken, On the Jacobsthal and Jacobsthal-Lucas Subscripts, J. Algebra Comput. Appl, Vol.8, pp.1-6 (2019).
  • V. E. Hoggatt Jr, M. Bicknell-Johnson, Convolution arrays for Jacobsthal and Fibonacci polynomials, The Fibonacci Quarterly, Vol.16, No.5, pp.385-402 (1978).
  • A. F. Horadam, Jacobsthal representation numbers, significance, Vol.2, pp.2-8 (1996).
  • C. KızılateS, On the Quadra Lucas-Jacobsthal Numbers, Karaelmas Science Engineering Journal/Karaelmas Fen ve MUhendislik Dergisi, Vol.7, No.2, (2017).
  • J. Kiusalaas, Numerical methods in engineering with Python. Cambridge university press, (2010). E. Ozkan, B. Kuloglu, On a Jacobsthal-like sequence associated with k-Jacobsthal-Lucas sequence. Journal of Contemporary Applied Mathematics, Vol.10, No.2, pp. 3-13, (2020).
  • E. Ozkan, M. Uysal, B. Kuloglu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials. Asian-European Journal of Mathematics, Vol.15, No.06, pp. 2250119, (2022).
  • B. Kuloğlu, E. Ozkan, Applications of Jacobsthal and Jacobsthal-Lucas Numbers in Coding Theory, pp. 54-64, (2023).
  • M. S. U. Mufid, T. Asfihani, L. Hanafi, On the Lagrange interpolation of Fibonacci sequence, (IJCSAM) International Journal of Computing Science and Applied Mathematics, Vol.2, No.3, pp.38-40 (2016).
  • E. Ozkan, M. Uysal, On quaternions with higher order Jacobsthal numbers components, Gazi University Journal of Science, pp.1-1 (2023).
  • E. E. Polatlı, Y. Soykan On generalized third-order Jacobsthal numbers, Asian Research Journal of Mathematics, Vol.17, No.2, pp.1-19, (2021).
  • E. SUli, D. F. Mayers, An introduction to numerical analysis, Cambridge university press, (2003).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A001045). https://oeis.org/A001045, (1973).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A014551). https://oeis.org/A014551, (1973).
  • S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences, Vol.70, No.9, pp.3467-3476 (2015).
Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 128 - 137, 29.12.2024
https://doi.org/10.33773/jum.1518403

Abstract

References

  • M. Asci, E. GUrel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers, Ars Combinatoria, Vol.5, No.111, pp.53-62 (2013).
  • P. Catarino, P. Vasco, H. Campos, A. P. Aires, A. Borges, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra and Discrete Mathematics, vol.20, No.1, (2015).
  • G. Cerda-Morales, On bicomplex third-order Jacobsthal numbers, Complex Variables and Elliptic Equations, Vol.68, No.1, pp.44-56 (2023).
  • C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. In Annales mathematicae et informaticae, pp. 27-39 (2013).
  • C. B. Cimen, A. Ipek, On jacobsthal and jacobsthal–lucas octonions, Mediterranean Journal of Mathematics, Vol.14, pp.1-13 (2017).
  • A. DaSdemir, On the Jacobsthal numbers by matrix method. SUleyman Demirel University Faculty of Arts and Science Journal of Science, vol.7, No.1, pp.69-76 (2012).
  • O. Deveci and G. Artun, On the adjacency-Jacobsthal numbers, Communications in Algebra, vol.47, No.11, pp.4520-4532 (2019).
  • C. M. Dikmen, Hyperbolic jacobsthal numbers, Asian Research Journal of Mathematics, Vol.15, No.4, pp.1-9 (2019). O. Diskaya, H. Menken, On the Jacobsthal and Jacobsthal-Lucas Subscripts, J. Algebra Comput. Appl, Vol.8, pp.1-6 (2019).
  • V. E. Hoggatt Jr, M. Bicknell-Johnson, Convolution arrays for Jacobsthal and Fibonacci polynomials, The Fibonacci Quarterly, Vol.16, No.5, pp.385-402 (1978).
  • A. F. Horadam, Jacobsthal representation numbers, significance, Vol.2, pp.2-8 (1996).
  • C. KızılateS, On the Quadra Lucas-Jacobsthal Numbers, Karaelmas Science Engineering Journal/Karaelmas Fen ve MUhendislik Dergisi, Vol.7, No.2, (2017).
  • J. Kiusalaas, Numerical methods in engineering with Python. Cambridge university press, (2010). E. Ozkan, B. Kuloglu, On a Jacobsthal-like sequence associated with k-Jacobsthal-Lucas sequence. Journal of Contemporary Applied Mathematics, Vol.10, No.2, pp. 3-13, (2020).
  • E. Ozkan, M. Uysal, B. Kuloglu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials. Asian-European Journal of Mathematics, Vol.15, No.06, pp. 2250119, (2022).
  • B. Kuloğlu, E. Ozkan, Applications of Jacobsthal and Jacobsthal-Lucas Numbers in Coding Theory, pp. 54-64, (2023).
  • M. S. U. Mufid, T. Asfihani, L. Hanafi, On the Lagrange interpolation of Fibonacci sequence, (IJCSAM) International Journal of Computing Science and Applied Mathematics, Vol.2, No.3, pp.38-40 (2016).
  • E. Ozkan, M. Uysal, On quaternions with higher order Jacobsthal numbers components, Gazi University Journal of Science, pp.1-1 (2023).
  • E. E. Polatlı, Y. Soykan On generalized third-order Jacobsthal numbers, Asian Research Journal of Mathematics, Vol.17, No.2, pp.1-19, (2021).
  • E. SUli, D. F. Mayers, An introduction to numerical analysis, Cambridge university press, (2003).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A001045). https://oeis.org/A001045, (1973).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A014551). https://oeis.org/A014551, (1973).
  • S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences, Vol.70, No.9, pp.3467-3476 (2015).
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Orhan Dişkaya 0000-0001-5698-7834

Publication Date December 29, 2024
Submission Date July 18, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024 Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Cite

APA Dişkaya, O. (2024). ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 128-137. https://doi.org/10.33773/jum.1518403
AMA Dişkaya O. ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. JUM. December 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):128-137. doi:10.33773/jum.1518403
Chicago Dişkaya, Orhan. “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”. Journal of Universal Mathematics 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024): 128-37. https://doi.org/10.33773/jum.1518403.
EndNote Dişkaya O (December 1, 2024) ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 128–137.
IEEE O. Dişkaya, “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”, JUM, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", pp. 128–137, 2024, doi: 10.33773/jum.1518403.
ISNAD Dişkaya, Orhan. “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024), 128-137. https://doi.org/10.33773/jum.1518403.
JAMA Dişkaya O. ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. JUM. 2024;7:128–137.
MLA Dişkaya, Orhan. “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”. Journal of Universal Mathematics, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, pp. 128-37, doi:10.33773/jum.1518403.
Vancouver Dişkaya O. ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):128-37.