Research Article
BibTex RIS Cite

Ateş Dikeni Meyvesi (Pyracantha coccinea Roemer) Ekstraktları Kullanılarak Sentezlenen Demir Nanopartiküllerinin Karakterizasyonu, Antioksidan ve Antimikrobiyal Aktiviteleri

Year 2023, Volume: 13 Issue: 2, 255 - 265, 29.12.2023

Abstract

Bu çalışmanın amacı, ateş dikeni meyvelerinden yeşil sentez yolu ile elde edilmiş metal nanopartiküllerin biyolojik aktivitesini belirlemektir. Gümüşhane Üniversitesi kampüsünde peyzaj amacıyla yetiştirilen ateş dikeni bitkisinin (Pyracantha coccinea) meyve ve tohumlarından elde edilen ekstraktlardan demir nanopartikülleri (Fe-NP) sentezlenmiştir. Hem ekstraktların hem de sentezlenen demir nanopartiküllerinin antioksidan ve antimikrobiyal özellikleri değerlendirilmiştir.
Fe-NP’leri karakterize etmek için FT-IR spektroskopisi, taramalı elektron mikroskobu (SEM) ve X-Işını Kırınımı (XRD) analizleri gerçekleştirilmiştir. Meyve özlerinin ve Fe-NP’lerin antioksidan aktivite etkinliği, ABTS radikal süpürme aktivitesi, DPPH radikal süpürme aktivitesi, demir indirgeyici antioksidan güç (FRAP), toplam fenolik içerik (TPC), toplam flavonoid (TFC) ve toplam antioksidan içeriği (TAC) gibi antioksidan aktivite belirleme testleri kullanılarak tespit edilmiştir. Tüm antioksidan aktivite testlerinin sonuçları, demir nanopartiküllerinin meyve ekstraktlarından daha yüksek antioksidan aktivite sergilediğini göstermiştir.
Ayrıca Gram-negatif bakterilere (Yersinia pseudotuberculosis ATCC 911, Escherichia coli ATCC 25922, Proteus vulgaris ATCC 13315 ve Pseudomonas aeruginosa ATCC 43288) ve Gram-pozitif bakterilere (Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Streptococcus pyogenes ATCC 19615) karşı meyve ekstraktlarının ve nanopartiküllerin minimum inhibe edici konsantrasyonu (MIK), mikrodilüsyon besiyeri yöntemi kullanılarak belirlenmiştir. Antioksidan aktivite bulgularına benzer şekilde, Fe-NP’ler meyve özlerine kıyasla daha güçlü antimikrobiyal aktivite göstermiştir.

References

  • Abbaszadeh, H., Keikhaei, B., Mottaghi, S. 2019. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother. Res., 33(8): 2002-2014.
  • Ahmed, D., Khan M.M., Saeed R. 2015. Comparative analysis of phenolic, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves, Antioxidants, 4: 394-409.
  • Akar, Z. 2021. Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L. Saudi J. Biol. Sci., 28(11): 6639-6644.
  • Akar. Z, Karakurt, A., Okumuş, F., Cinemre, S., Düzgün, A. Ö., Akar, B. Can, Z. 2020. RP-HPLC-UV analysis of the phenolic compounds, antimicrobial activity against multi-drug resistant bacteria and antioxidant activity of fruit and seed of Diospyros lotus L. Int. J. Second. Metab., 7(4): 237-246.
  • Alsammarraie, F.K., Wang, W., Zhou, P., Mustapha, A., Lin, M. 2018. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf. B, 171: 398-405.
  • Baltacı, C., Öz, M., Fidan, M. S., Üçüncü, O., Merve, Ş. 2022. Chemical composition, antioxidant and antimicrobial activity of Colchicum speciosum Steven growing in Türkiye. Pak. J. Agri. Sci, 59(5): 729-736.
  • Benzie, I.F., Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem, 239(1): 70–76.
  • Chatterjee, A., Mridha, D., Banerjee, J., Chanda, S., Ray, K., Acharya, K., Das, M., Roychowdhury, T., Sarkar, J. 2021. Green synthesis of iron oxide nanoparticles and their ameliorative effect on arsenic stress relief in Oryza sativa seedlings. Biocatal. Agric. Biotechnol., 38, 102207.
  • Demir, T., Akpınar, Ö., Kara, H., Güngör, H. 2019. Nar (Punica granatum L.) kabuğunun in vitro antidiyabetik, antienflamatuar, sitotoksik, antioksidan ve antimikrobiyal aktivitesi. Akademik Gıda, 17(1): 61-71.
  • Demirezen, D.A., Yıldız, Y.Ş., Yılmaz, Ş., Yılmaz, D.D. 2019. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J. Biosci. Bioeng., 127(2): 241-245.
  • Ebrahiminezhad, A., Bagheri, M., Taghizadeh, SM., Berenjian, A., Ghasemi, Y. 2016. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv. Nat. Sci.: Nanosci. Nanotechnol., 7(1): 015018.
  • Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A. K., Taghizadeh, S., Ghasemi, Y., Berenjian, A. 2018. Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol., 60(2): 154-168.
  • Ezealigo, US., Ezealigo, BN., Aisida, SO., Ezema, FI. 2021. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open, 4, 100027.
  • Fico, G., Bilia, A. R., Morelli, I., Tomè, F. 2000. Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem. Syst. Ecol., 28(7): 673-678.
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G. Scheffer, J.J. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J., 23(4): 213-226.
  • Fu, L., Xu, B.T., Xu, X.R., Qin, X.S., Gan, R.Y., Li, H.B. 2010. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 15(12): 8602-8617.
  • Gedikli, H. 2022. Türk siyah ve yeşil çayı ekstraklarının ve bu ekstraklardan yeşil sentez yoluyla üretilen demir nano parçacıklarının bazı gıdalarda aflatoksinlerin azaltılması üzerine bir araştırma. Yüksek Lisans Tezi, Gümüşhane Üniversitesi, 81 s.
  • Gottimukkala, K.S.V., Harika, R.P., Zamare, D. 2017. Green synthesis of iron nanoparticles using green tea leaves extract. J. Nanomedicine Biotherapeutic Discov., 7,1000151.
  • Gull, A., Lone, A.A., Wani, N.U.I. 2019. Biotic and abiotic stresses in plants. de Oliveria A.B. [eds.], In: abiotic and biotic stress in plants. IntechOpen, London, pp 3-8.
  • Herlekar, M., Barve, S., Kumar, R. 2014. Plant-mediated green synthesis of iron nanoparticles. J. Nanopart., 140619. Irshad, R., Tahir, K., Li, B., Ahmad, A., Siddiqui, AR., Nazir, S. 2017.
  • Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B: Biol., 170: 241-246.
  • Isah, T. 2019. Stress and defense responses in plant secondary metabolites production. Biol. Res., 52: 1-25.
  • Kabera, J.N., Semana, E., Musa, A.R., He, X. 2014. Bitki sekonder metabolitleri: biyosentez, sınıflandırma, işlev ve farmakolojik özellikler. J. Ecz. Pharmacol , 2 (7): 377-392.
  • Kanagasubbulakshmi, S., Kadirvelu, K. 2017. Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J., 2(4): 422-427.
  • Kasangana, P.B., Haddad, P.S., Stevanovic, T. 2015. Study of polyphenol content and antioxidant capacity of Myrianthus arboreus (cecropiaceae) root bark extracts. Antioxidants, 4(2): 410–426.
  • Kaska, A., Deniz, N., Çiçek, M. Mammadov, R. 2018. Evaluation of antioxidant properties, phenolic compounds, anthelmintic, and cytotoxic activities of various extracts isolated from Nepeta cadmea: an endemic plant for Turkey. J. Food Sci., 83(6): 1552-1559.
  • Kerasioti, E., Apostolou, A., Kafantaris, I., Chronis, K., Kokka, E., Dimitriadou, C., Tzanetou, E.N., Priftis A., Koulocheri, S.D. Haroutounian S.A., Kouretas, D., Stagos, D. 2019. Polyphenolic composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea extracts and assessment of their antioxidant activity in human endothelial cells. Antioxidants, 8(4), 92.
  • Keser, S. 2014. Antiradical activities and phytochemical compounds of firethorn (Pyracantha coccinea) fruit extracts. Nat. Prod. Res., 28(20): 1789-1794.
  • Khan, S.A., Shahid, S., Lee, C.S. 2020. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules, 10(6): 835.
  • Machado, S., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C. 2014. Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci. Total Environ., 496: 233-240.
  • Machado, S., Pacheco, J.G., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C. 2015. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total Environ, 533: 76-81.
  • Mahendiran, D., Subash, G., Arumai Selvan, D., Rehana, D., Senthil Kumar, R., Kalilur Rahiman, A. 2017. Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. Bionanoscience, 7(3): 530- 545.
  • Mohanpuria, P., Rana, N.K., Yadav, S.K. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res., 10(3): 507-517. https://doi.org/10.1007/ s11051-007-9275-x
  • Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H.M., Collins, J.B., George E. Hoag G.E., Suib, S. L. 2011. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1): 264-271.
  • Pagare, S., Bhatia, M., Tripathi, N., Pagare, S. Bansal, Y.K., 2015. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm., 9(3): 293-304.
  • Paiva, P.M., Gomes, F.S., Napoleão, T.H., Sá, R.A., Correia, M.T.S., Coelho, L.C.B.B. 2010. Antimicrobial activity of secondary metabolites and lectins from plants. In: A. Méndez Vilas, [eds.], Current research, technology and education topics in applied microbiology and microbial biotechnology, pp. 396-406.
  • Pal, R.S., Kumar, R.A., Agrawal, P.K., Bhatt, J.C. 2013. Antioxidant capacity and related phytochemicals analysis of methanolic extract of two wild edible fruits from north western Indian Himalaya. Int. J. Pharm. Bio. Sci., 4(2): 113-123.
  • Pattanayak, M. Nayak, P.L. 2013. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J. Nano Sci. Eng., 2(1): 6-9.
  • Possamai R.F.C., Tharmalingam, N., Escobar, I.E., d’Azevedo, P.A., Zimmer, K.R. Mylonakis, E. 2021. Antifungal activity of the phenolic compounds ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) against drug-resistant Candida auris. J. Fungi, 7(9): 763.
  • Prieto, P., Pineda, M., Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 269(2): 337-341.
  • Rehana, D., Mahendiran, D., Kumar, R.S., Rahiman, A.K. 2017. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 89: 1067-1077.
  • Saklani, S., Chandra, S., Mishra, A.P. 2011. Evaluation of antioxidant activity, quantitative estimation of phenols, anthocynins and flavonoids of wild edible fruits of Garhwal Himalaya. J. Pharm. Res., 4(11): 4083-4086.
  • Sarikurkcu, C., Tepe, B. 2015. Biological activity and phytochemistry of firethorn (Pyracantha coccinea MJ Roemer). J. Funct. Foods, 19: 669-675.
  • Sharifi-Rad, J., Song, S., Ali, A., Subbiah, V., Taheri, Y. Suleria, H.A. 2021. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Pyracantha coccinea M. Roem. and their antioxidant capacity. Cell. Mol. Biol., 67(1): 201-211.
  • Sharma, O.P., Bhat, T.K. 2009. DPPH antioxidant assay revisited. Food Chem., 113(4): 1202-1205.
  • Simonetti, G., Brasili, E., Pasqua, G. 2020. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 25(16): 3748.
  • Slinkard, K., Singleton, V.L. 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 28: 49–55.
  • Thirumurugan, D., Cholarajan, A., Raja, S.S., Vijayakumar, R. 2018. An introductory chapter: secondary metabolites. In: R. Vijayakumar, S.S.S. Raja, Secondary Metabolites-Sources and Applications, IntechOpen, pp. 3-21.
  • Tunç, K., Semerci, A.B. Okur, İ. 2020. Antioxidant activity of the fruits of Pyracantha coccinea using ethanolic extract method. Food and Health, 6(1): 35-40.
  • Turu, D., Bozyel, M.E., Candan, K., Yakan, M.A., Benek, A., Canli, K. 2020. In vitro antimicrobial and antioxidant activities of Pyracantha coccinea fruits ethanol extract. Int. J. Multidiscip. Res., 4: 89-93.
  • Üçüncü, O., Baltaci, C., Akar, Z., Duzgun, A., Cuce, M. Kandemir, A. 2020. Biological activities and phytochemical screening of ethanol extracts from Adonis paryadrica (Ranunculaceae). Farmacia, 68(6): 1062-1068.
  • Vitta, Y., Figueroa, M., Calderon, M. Ciangherotti, C. 2020. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Technol., 3: 97-103.
  • Wang, T., Jin, X., Chen, Z., Megharaj, M., Naidu, R. 2014a. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 466: 210-213.
  • Wang, T., Lin, J., Chen, Z., Megharaj, M. Naidu, R. 2014b. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod., 83: 413-419.
  • Yusefi, M., Shameli, K., Rasit, A.R., Pang, S.W. Teow S.Y. 2020. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J. Mol. Struct., 127539.
  • Zehra, A., Choudhary, S., Naeem, M., Masroor, A., Khan, M. Aftab, T. 2019. A review of medicinal and aromatic plants and their secondary metabolites status under abiotic stress. J. Med. Plant Res., 7(3): 99-106.

Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts

Year 2023, Volume: 13 Issue: 2, 255 - 265, 29.12.2023

Abstract

The main focus of this study was to explore the biological activity of metal nanoparticles that were green-synthesized from firethorn fruits. Specifically, iron nanoparticles (Fe-NP) were synthesized from extracts obtained from fruits and seeds of the firethorn plant (Pyracantha coccinea) grown on Gumushane University’s campus for landscaping purposes. The antioxidant and antimicrobial properties of both extracts and synthesized iron nanoparticles were evaluated.
To characterize the Fe-NPs, FT-IR spectroscopy, scanning electron microscopy (SEM), and X-Ray Diffraction (XRD) analyses were performed. The antioxidant activity of the fruit extracts and Fe-NPs was assessed using various antioxidant activity tests, including ABTS radical scavenging activity, DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant content (TAC). The results of all antioxidant activity tests indicated that the iron nanoparticles exhibited higher antioxidant activity than the fruit extracts.
Moreover, the minimum inhibitory concentrations (MIC) of the fruit extracts and nanoparticles against Gram-negative bacteria (Yersinia pseudotuberculosis ATCC 911, Escherichia coli ATCC 25922, Proteus vulgaris ATCC 13315, and Pseudomonas aeruginosa ATCC 43288) and Gram-positive bacteria (Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, and Bacillus subtilis ATCC 6633) were determined the using the medium microdilution procedure. Similar to the antioxidant activity findings, the Fe-NPs demonstrated stronger antimicrobial activity compared to the fruit extracts.

References

  • Abbaszadeh, H., Keikhaei, B., Mottaghi, S. 2019. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother. Res., 33(8): 2002-2014.
  • Ahmed, D., Khan M.M., Saeed R. 2015. Comparative analysis of phenolic, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves, Antioxidants, 4: 394-409.
  • Akar, Z. 2021. Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L. Saudi J. Biol. Sci., 28(11): 6639-6644.
  • Akar. Z, Karakurt, A., Okumuş, F., Cinemre, S., Düzgün, A. Ö., Akar, B. Can, Z. 2020. RP-HPLC-UV analysis of the phenolic compounds, antimicrobial activity against multi-drug resistant bacteria and antioxidant activity of fruit and seed of Diospyros lotus L. Int. J. Second. Metab., 7(4): 237-246.
  • Alsammarraie, F.K., Wang, W., Zhou, P., Mustapha, A., Lin, M. 2018. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf. B, 171: 398-405.
  • Baltacı, C., Öz, M., Fidan, M. S., Üçüncü, O., Merve, Ş. 2022. Chemical composition, antioxidant and antimicrobial activity of Colchicum speciosum Steven growing in Türkiye. Pak. J. Agri. Sci, 59(5): 729-736.
  • Benzie, I.F., Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem, 239(1): 70–76.
  • Chatterjee, A., Mridha, D., Banerjee, J., Chanda, S., Ray, K., Acharya, K., Das, M., Roychowdhury, T., Sarkar, J. 2021. Green synthesis of iron oxide nanoparticles and their ameliorative effect on arsenic stress relief in Oryza sativa seedlings. Biocatal. Agric. Biotechnol., 38, 102207.
  • Demir, T., Akpınar, Ö., Kara, H., Güngör, H. 2019. Nar (Punica granatum L.) kabuğunun in vitro antidiyabetik, antienflamatuar, sitotoksik, antioksidan ve antimikrobiyal aktivitesi. Akademik Gıda, 17(1): 61-71.
  • Demirezen, D.A., Yıldız, Y.Ş., Yılmaz, Ş., Yılmaz, D.D. 2019. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J. Biosci. Bioeng., 127(2): 241-245.
  • Ebrahiminezhad, A., Bagheri, M., Taghizadeh, SM., Berenjian, A., Ghasemi, Y. 2016. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv. Nat. Sci.: Nanosci. Nanotechnol., 7(1): 015018.
  • Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A. K., Taghizadeh, S., Ghasemi, Y., Berenjian, A. 2018. Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol., 60(2): 154-168.
  • Ezealigo, US., Ezealigo, BN., Aisida, SO., Ezema, FI. 2021. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open, 4, 100027.
  • Fico, G., Bilia, A. R., Morelli, I., Tomè, F. 2000. Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem. Syst. Ecol., 28(7): 673-678.
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G. Scheffer, J.J. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J., 23(4): 213-226.
  • Fu, L., Xu, B.T., Xu, X.R., Qin, X.S., Gan, R.Y., Li, H.B. 2010. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 15(12): 8602-8617.
  • Gedikli, H. 2022. Türk siyah ve yeşil çayı ekstraklarının ve bu ekstraklardan yeşil sentez yoluyla üretilen demir nano parçacıklarının bazı gıdalarda aflatoksinlerin azaltılması üzerine bir araştırma. Yüksek Lisans Tezi, Gümüşhane Üniversitesi, 81 s.
  • Gottimukkala, K.S.V., Harika, R.P., Zamare, D. 2017. Green synthesis of iron nanoparticles using green tea leaves extract. J. Nanomedicine Biotherapeutic Discov., 7,1000151.
  • Gull, A., Lone, A.A., Wani, N.U.I. 2019. Biotic and abiotic stresses in plants. de Oliveria A.B. [eds.], In: abiotic and biotic stress in plants. IntechOpen, London, pp 3-8.
  • Herlekar, M., Barve, S., Kumar, R. 2014. Plant-mediated green synthesis of iron nanoparticles. J. Nanopart., 140619. Irshad, R., Tahir, K., Li, B., Ahmad, A., Siddiqui, AR., Nazir, S. 2017.
  • Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B: Biol., 170: 241-246.
  • Isah, T. 2019. Stress and defense responses in plant secondary metabolites production. Biol. Res., 52: 1-25.
  • Kabera, J.N., Semana, E., Musa, A.R., He, X. 2014. Bitki sekonder metabolitleri: biyosentez, sınıflandırma, işlev ve farmakolojik özellikler. J. Ecz. Pharmacol , 2 (7): 377-392.
  • Kanagasubbulakshmi, S., Kadirvelu, K. 2017. Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J., 2(4): 422-427.
  • Kasangana, P.B., Haddad, P.S., Stevanovic, T. 2015. Study of polyphenol content and antioxidant capacity of Myrianthus arboreus (cecropiaceae) root bark extracts. Antioxidants, 4(2): 410–426.
  • Kaska, A., Deniz, N., Çiçek, M. Mammadov, R. 2018. Evaluation of antioxidant properties, phenolic compounds, anthelmintic, and cytotoxic activities of various extracts isolated from Nepeta cadmea: an endemic plant for Turkey. J. Food Sci., 83(6): 1552-1559.
  • Kerasioti, E., Apostolou, A., Kafantaris, I., Chronis, K., Kokka, E., Dimitriadou, C., Tzanetou, E.N., Priftis A., Koulocheri, S.D. Haroutounian S.A., Kouretas, D., Stagos, D. 2019. Polyphenolic composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea extracts and assessment of their antioxidant activity in human endothelial cells. Antioxidants, 8(4), 92.
  • Keser, S. 2014. Antiradical activities and phytochemical compounds of firethorn (Pyracantha coccinea) fruit extracts. Nat. Prod. Res., 28(20): 1789-1794.
  • Khan, S.A., Shahid, S., Lee, C.S. 2020. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules, 10(6): 835.
  • Machado, S., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C. 2014. Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci. Total Environ., 496: 233-240.
  • Machado, S., Pacheco, J.G., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C. 2015. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total Environ, 533: 76-81.
  • Mahendiran, D., Subash, G., Arumai Selvan, D., Rehana, D., Senthil Kumar, R., Kalilur Rahiman, A. 2017. Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. Bionanoscience, 7(3): 530- 545.
  • Mohanpuria, P., Rana, N.K., Yadav, S.K. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res., 10(3): 507-517. https://doi.org/10.1007/ s11051-007-9275-x
  • Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H.M., Collins, J.B., George E. Hoag G.E., Suib, S. L. 2011. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1): 264-271.
  • Pagare, S., Bhatia, M., Tripathi, N., Pagare, S. Bansal, Y.K., 2015. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm., 9(3): 293-304.
  • Paiva, P.M., Gomes, F.S., Napoleão, T.H., Sá, R.A., Correia, M.T.S., Coelho, L.C.B.B. 2010. Antimicrobial activity of secondary metabolites and lectins from plants. In: A. Méndez Vilas, [eds.], Current research, technology and education topics in applied microbiology and microbial biotechnology, pp. 396-406.
  • Pal, R.S., Kumar, R.A., Agrawal, P.K., Bhatt, J.C. 2013. Antioxidant capacity and related phytochemicals analysis of methanolic extract of two wild edible fruits from north western Indian Himalaya. Int. J. Pharm. Bio. Sci., 4(2): 113-123.
  • Pattanayak, M. Nayak, P.L. 2013. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J. Nano Sci. Eng., 2(1): 6-9.
  • Possamai R.F.C., Tharmalingam, N., Escobar, I.E., d’Azevedo, P.A., Zimmer, K.R. Mylonakis, E. 2021. Antifungal activity of the phenolic compounds ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) against drug-resistant Candida auris. J. Fungi, 7(9): 763.
  • Prieto, P., Pineda, M., Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 269(2): 337-341.
  • Rehana, D., Mahendiran, D., Kumar, R.S., Rahiman, A.K. 2017. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 89: 1067-1077.
  • Saklani, S., Chandra, S., Mishra, A.P. 2011. Evaluation of antioxidant activity, quantitative estimation of phenols, anthocynins and flavonoids of wild edible fruits of Garhwal Himalaya. J. Pharm. Res., 4(11): 4083-4086.
  • Sarikurkcu, C., Tepe, B. 2015. Biological activity and phytochemistry of firethorn (Pyracantha coccinea MJ Roemer). J. Funct. Foods, 19: 669-675.
  • Sharifi-Rad, J., Song, S., Ali, A., Subbiah, V., Taheri, Y. Suleria, H.A. 2021. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Pyracantha coccinea M. Roem. and their antioxidant capacity. Cell. Mol. Biol., 67(1): 201-211.
  • Sharma, O.P., Bhat, T.K. 2009. DPPH antioxidant assay revisited. Food Chem., 113(4): 1202-1205.
  • Simonetti, G., Brasili, E., Pasqua, G. 2020. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 25(16): 3748.
  • Slinkard, K., Singleton, V.L. 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 28: 49–55.
  • Thirumurugan, D., Cholarajan, A., Raja, S.S., Vijayakumar, R. 2018. An introductory chapter: secondary metabolites. In: R. Vijayakumar, S.S.S. Raja, Secondary Metabolites-Sources and Applications, IntechOpen, pp. 3-21.
  • Tunç, K., Semerci, A.B. Okur, İ. 2020. Antioxidant activity of the fruits of Pyracantha coccinea using ethanolic extract method. Food and Health, 6(1): 35-40.
  • Turu, D., Bozyel, M.E., Candan, K., Yakan, M.A., Benek, A., Canli, K. 2020. In vitro antimicrobial and antioxidant activities of Pyracantha coccinea fruits ethanol extract. Int. J. Multidiscip. Res., 4: 89-93.
  • Üçüncü, O., Baltaci, C., Akar, Z., Duzgun, A., Cuce, M. Kandemir, A. 2020. Biological activities and phytochemical screening of ethanol extracts from Adonis paryadrica (Ranunculaceae). Farmacia, 68(6): 1062-1068.
  • Vitta, Y., Figueroa, M., Calderon, M. Ciangherotti, C. 2020. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Technol., 3: 97-103.
  • Wang, T., Jin, X., Chen, Z., Megharaj, M., Naidu, R. 2014a. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 466: 210-213.
  • Wang, T., Lin, J., Chen, Z., Megharaj, M. Naidu, R. 2014b. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod., 83: 413-419.
  • Yusefi, M., Shameli, K., Rasit, A.R., Pang, S.W. Teow S.Y. 2020. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J. Mol. Struct., 127539.
  • Zehra, A., Choudhary, S., Naeem, M., Masroor, A., Khan, M. Aftab, T. 2019. A review of medicinal and aromatic plants and their secondary metabolites status under abiotic stress. J. Med. Plant Res., 7(3): 99-106.
There are 56 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Volkan Karakullukçu 0000-0002-0893-6423

Bülent Akar 0000-0002-1421-374X

Cemallettin Baltacı 0000-0002-4336-4002

Azer Özad Düzgün 0000-0002-6301-611X

Ömer Karpuz 0000-0002-0546-9831

Publication Date December 29, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Karakullukçu, V., Akar, B., Baltacı, C., Özad Düzgün, A., et al. (2023). Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts. Karaelmas Fen Ve Mühendislik Dergisi, 13(2), 255-265. https://doi.org/10.7212/karaelmasfen.1297963
AMA Karakullukçu V, Akar B, Baltacı C, Özad Düzgün A, Karpuz Ö. Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts. Karaelmas Fen ve Mühendislik Dergisi. December 2023;13(2):255-265. doi:10.7212/karaelmasfen.1297963
Chicago Karakullukçu, Volkan, Bülent Akar, Cemallettin Baltacı, Azer Özad Düzgün, and Ömer Karpuz. “Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha Coccinea Roemer) Extracts”. Karaelmas Fen Ve Mühendislik Dergisi 13, no. 2 (December 2023): 255-65. https://doi.org/10.7212/karaelmasfen.1297963.
EndNote Karakullukçu V, Akar B, Baltacı C, Özad Düzgün A, Karpuz Ö (December 1, 2023) Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts. Karaelmas Fen ve Mühendislik Dergisi 13 2 255–265.
IEEE V. Karakullukçu, B. Akar, C. Baltacı, A. Özad Düzgün, and Ö. Karpuz, “Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts”, Karaelmas Fen ve Mühendislik Dergisi, vol. 13, no. 2, pp. 255–265, 2023, doi: 10.7212/karaelmasfen.1297963.
ISNAD Karakullukçu, Volkan et al. “Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha Coccinea Roemer) Extracts”. Karaelmas Fen ve Mühendislik Dergisi 13/2 (December 2023), 255-265. https://doi.org/10.7212/karaelmasfen.1297963.
JAMA Karakullukçu V, Akar B, Baltacı C, Özad Düzgün A, Karpuz Ö. Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:255–265.
MLA Karakullukçu, Volkan et al. “Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha Coccinea Roemer) Extracts”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 13, no. 2, 2023, pp. 255-6, doi:10.7212/karaelmasfen.1297963.
Vancouver Karakullukçu V, Akar B, Baltacı C, Özad Düzgün A, Karpuz Ö. Characterization, Antioxidant and Antimicrobial Activities of Iron Nanoparticles Synthesized Using Firethorn Fruit (Pyracantha coccinea Roemer) Extracts. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(2):255-6.