Research Article
BibTex RIS Cite

Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması

Year 2024, Volume: 14 Issue: 2, 52 - 60, 23.07.2024

Abstract

Günümüzde metalurji, galvaniz kaplama, deri tabaklama vb. endüstrilerde kromun yaygın kullanımı, sulu kromun çevreye salınmasına neden olmaktadır. Sulu çözeltilerde, krom genellikle Cr(VI) veya Cr(III) olarak bulunmaktadır. Kromun bu iki formu farklı kimyasal, biyolojik ve çevresel etki özelliklerine sahiptir. Cr(VI), toprakta ve su sistemlerinde oldukça hareketli olan HCrO4-, Cr2O72- ve CrO42- gibi anyonik türler olarak bulunur. Bu çalışmada, arap zamkı ile modifiye edilmiş manyetik nanopartiküller (AZ-MNP) kullanılarak kesikli adsorpsiyon yöntemi ile sulu çözeltiden Cr(VI)’nın uzaklaştırılması incelenmiştir. Arap zamkının karboksilik grupları ile Fe3O4’ün yüzeyindeki hidroksil grupları arasındaki etkileşim yoluyla modifiyesi sağlanarak AZ-MNP elde edilmiştir. Yüzey modifikasyonu, Fe3O4’ün faz değişikliğine neden olmazken, çapı 9-13 nm aralığında olan ikincil partiküllerin oluşumuna yol açmıştır. Adsorpsiyon hızı, iç difüzyon direncinin olmaması nedeniyle 45 dakika içinde dengeye ulaşacak kadar hızlı ve hem MNP hem de AZ-MNP için adsorpsiyon kapasiteleri, çözelti pH’ının düşmesiyle artmıştır. AZ-MNP’de maksimum adsorpsiyon kapasitesi, Langmuir adsorpsiyon sabiti ve entalpi değişimleri sırasıyla 0.194 mg/g, 11.06 mg/L ve 9.4 kJ/mol olarak belirlenmiştir.

References

  • Akın İ., Zor E., & Bingöl, H., 2023. GO@Fe3O4 katkılı polimerik kompozit membranların hazırlanması ve karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 5(2), 38-52. https://doi.org/10.47112/neufmbd.2023.8
  • Akin İ., 2023. Preparation of chitosan microcapsules containing modified graphene oxide and investigation of water treatment performance. Chemical Papers, İn press. https://doi.org/10.1007/s11696-023-03222-3
  • Akin I., Arslan G., Tor A., Ersoz M., & Cengeloglu Y., 2012. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. Journal of Hazardous Materials, 235-236, 62–68. https://doi.org/10.1016/j.jhazmat.2012.06.024
  • Agrawal A., Pal C., Sahu K.K., 2008. Extractive removal of chromium (VI) from industrial waste solution, Journal of Hazardous Materials, 159, 458–464. https://doi.org/10.1016/j.jhazmat.2008.02.121
  • ATSDR, 2000. Agency for Toxic Substances and Disease Registary, Division of Toxicology/Toxicology Information Branch (ATSDR), Toxicological profile for chromium, ATSDR, Atlanta, USA, 1–157.
  • Banerjee S.S., Jayaram R.V., Joshi M.V., 2004. Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash, Seperation Science and Technology, 39, 1611–1629. https://doi.org/10.1081/ss-120030778
  • Banerjee S.S., Chen D.H., 2007. Fast removal of copper ions by gum arabic modified magnetic nano adsorbent, Journal of Hazardous Materials, 147, 792–799. https://doi.org/10.1016/j.jhazmat.2007.01.079
  • Barassi, G., Valdés A., Araneda C., Basualto C., Sapag J., Tapia C., Valenzuela F., 2009. Cr(VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: Kinetics and thermodynamics analysis, Journal of Hazardous Materials, 172, 262-268. https://doi.org/10.1016/j.jhazmat.2009.06.167
  • Bhowal A., Datta S., 2001. Studies on transport mechanism of Cr(VI) extraction from an acidic solution using liquid surfactant membranes, Journal of Membrane Science, 188, 1–8. https://doi.org/10.1016/s0376-7388(00)00586-x
  • Can K., Ozmen M., Ersoz M., 2009. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloids and Surfaces B: Biointerfaces, 71, 154-159. https://doi.org/10.1016/j.colsurfb.2009.01.02
  • Çınar Acar B., Yüksekdağ Z. 2023. Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1): 1006-1029. https://doi.org/10.47495/okufbed.1089874
  • EPA, 1990. Environmental Protection Agency, Environmental Pollution Control Alternatives,EPA/625/5-90/025,EPA/625/4-89/023, Cincinnati, USA.
  • Freundlich H.M.F., 1906. Über die adsorption in losungen, Journal of Physical Chemistry, 57A, 385–470. https://doi.org/10.1515/zpch-1907-5723
  • Gode F., Pehlivan E., 2005. Removal of Cr(VI) from aqueous solution by two Lewatit anion exchange resins, Journal of Hazardous Materials, B119, 175–182. https://doi.org/10.1016/j.jhazmat.2004.12.004
  • Groman E.V., Menz E.T., Enriquez P.M., Jung C., Lewis J.M., Josephson L., 1996. Delivery of therapeutic agents to receptors using polysaccharides, United States Patent, 5554386.
  • Ho Y.S., McKay G., 1999. Pseudo-second order model for sorption processes, Process Biochemistry, 34 (1999) 451-465. https://doi.org/10.1016/s0032-9592(98)00112-5
  • Keihanfar M., Mirjalili B.B.F. and Bamoniri A., 2023. Sb(III)/Gum Arabic composite as a new natural-based environmentally green catalyst for the one-pot pseudo-four-component synthesis of 2H-indazolo[2,1-b] phthalazinetriones. RSC Advanced, 13, 17869-17873. https://doi.org/10.1039/d3ra02556j
  • Langmuir I., 1916. The constitution and fundamental properties of solids and liquids, Journal of American Chemical Society 38, 2221–2295. https://doi.org/10.1016/s0016-0032(17)90938-x
  • Leong Y.K., Seah U., Chu S.Y., Ong B.C., 2001. Effect of gum arabic macro- molecules on surface forces in oxide dispersion, Colloid and Surface Science, 182, 263–268. https://doi.org/10.1016/S0927-7757(00)00826-8
  • Mao T., Lin L., Shi X., Cheng Y., Luo, X., Fang C., 2023. Research Progress of Treatment Technology and Adsorption Materials for Removing Chromate in the Environment. Materials, 16, 2979. https://doi.org/10.3390/ma16082979
  • Maity D., Agrawal D.C., 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials, 308, 46. https://doi.org/10.1016/j.jmmm.2006.05.00
  • Murlidhara H.S., 1986. Advances in Solid–Liquid Separation, Batelle Press, Colombus Richland, Ohio, ISBN 10: 0851863639 / ISBN 13: 9780851863634
  • Pehlivan E., Cetin S., 2009. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer, Journal of Hazardous Materials 163, 448–453. https://doi.org/10.1016/j.jhazmat.2008.06.115
  • Reis A.V., Guilherme M.R., Cavalcanti O.A., Rubira A.F., Muniz E.C., 2006. Synthesis and characterization of pH responsive hydrogels based on chemically modified arabic gum polysaccharide, Polymer 47, 2023–2029. https://doi.org/10.1016/j.polymer.2006.01.058
  • Saha B., Gill R.J., Bailey D.G., Kabay N., Arda M., 2004. Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336, Reactive Functional Polymer, 60, 223–244. https://doi.org/10.1016/j.reactfunctpolym.2004.03.003
  • Seid S.M., Gonfa G., 2022. Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environmental Challenges, 8, 100574. https://doi.org/10.1016/j.envc.2022.100574
  • Selimoğlu F., 2023. Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23 (2023) 021102 (306-315). https://doi.org/10.35414/akufemubid.1224249
  • Sujana M.G., Thakur R.S., Rao S.B., 1998. Removal of Fluoride from Aqueous Solution by Using Alum Sludge, Journal of Colloid Interface Science, 206, 94–101. https://doi.org/10.1006/jcis.1998.5611
  • Vijayaraj A.S., Mohandass C., Joshi D., Rajput N., 2018. Effective bioremediation and toxicity assessment of tannery wastewaters treated with indigenous bacteria, 3 Biotech, 8(10), 428. https://doi.org/10.1007/s13205-018-1444-3
  • Weltrowski M., Martel B., Morcellet M., 1996. Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium, Journal of Applied Polymer Science, 59, 647–654. https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<647
  • Xanthopoulou M., Katsoyiannis I.A., 2023. Enhanced Adsorption of Chromate and Arsenate Ions from Contaminated Water with Emphasis on Polyethylenimine Modified Materials: A Review. Separations, 10, 441. https://doi.org/10.3390/separations10080441 https://byjus.com/chemistry/gum-arabic/

Removal of Chromate Ions from Aqueous Solutions with Gum Arabic Modified Magnetic Nanoparticles

Year 2024, Volume: 14 Issue: 2, 52 - 60, 23.07.2024

Abstract

Today, metallurgy, galvanizing, leather tanning, etc. the widespread use of chromium in industries causes the release of aqueous chromium to the environment. In aqueous solutions, chromium is usually present as Cr(VI) or Cr(III). These two forms of chromium have different chemical, biological and environmental effects. Cr(VI) exists as anionic species such as HCrO4-, Cr2O72- and CrO42-, which are highly mobile in soil and water systems. In this study, the removal of Cr(VI) from aqueous solution by batch adsorption method using gum arabic modified magnetic nanoparticles (GA-MNP) was investigated. AZ-MNP was obtained by modifying the carboxylic groups of gum arabic through the interaction between the hydroxyl groups on the surface of Fe3O4. Surface modification with gum arabic led to the formation of secondary particles with diameters in the range of 9-13 nm. The adsorption rate was fast enough to reach equilibrium within 45 minutes due to the lack of internal diffusion resistance. The adsorption capacities for MNP and AZ-MNP increased with decreasing solution pH. Maximum adsorption capacity, Langmuir adsorption constant and enthalpy changes in GA-MNP were determined as 0.194 mg/g, 11.06 mg/L and 9.4 kJ/mol, respectively.

References

  • Akın İ., Zor E., & Bingöl, H., 2023. GO@Fe3O4 katkılı polimerik kompozit membranların hazırlanması ve karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 5(2), 38-52. https://doi.org/10.47112/neufmbd.2023.8
  • Akin İ., 2023. Preparation of chitosan microcapsules containing modified graphene oxide and investigation of water treatment performance. Chemical Papers, İn press. https://doi.org/10.1007/s11696-023-03222-3
  • Akin I., Arslan G., Tor A., Ersoz M., & Cengeloglu Y., 2012. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. Journal of Hazardous Materials, 235-236, 62–68. https://doi.org/10.1016/j.jhazmat.2012.06.024
  • Agrawal A., Pal C., Sahu K.K., 2008. Extractive removal of chromium (VI) from industrial waste solution, Journal of Hazardous Materials, 159, 458–464. https://doi.org/10.1016/j.jhazmat.2008.02.121
  • ATSDR, 2000. Agency for Toxic Substances and Disease Registary, Division of Toxicology/Toxicology Information Branch (ATSDR), Toxicological profile for chromium, ATSDR, Atlanta, USA, 1–157.
  • Banerjee S.S., Jayaram R.V., Joshi M.V., 2004. Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash, Seperation Science and Technology, 39, 1611–1629. https://doi.org/10.1081/ss-120030778
  • Banerjee S.S., Chen D.H., 2007. Fast removal of copper ions by gum arabic modified magnetic nano adsorbent, Journal of Hazardous Materials, 147, 792–799. https://doi.org/10.1016/j.jhazmat.2007.01.079
  • Barassi, G., Valdés A., Araneda C., Basualto C., Sapag J., Tapia C., Valenzuela F., 2009. Cr(VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: Kinetics and thermodynamics analysis, Journal of Hazardous Materials, 172, 262-268. https://doi.org/10.1016/j.jhazmat.2009.06.167
  • Bhowal A., Datta S., 2001. Studies on transport mechanism of Cr(VI) extraction from an acidic solution using liquid surfactant membranes, Journal of Membrane Science, 188, 1–8. https://doi.org/10.1016/s0376-7388(00)00586-x
  • Can K., Ozmen M., Ersoz M., 2009. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloids and Surfaces B: Biointerfaces, 71, 154-159. https://doi.org/10.1016/j.colsurfb.2009.01.02
  • Çınar Acar B., Yüksekdağ Z. 2023. Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1): 1006-1029. https://doi.org/10.47495/okufbed.1089874
  • EPA, 1990. Environmental Protection Agency, Environmental Pollution Control Alternatives,EPA/625/5-90/025,EPA/625/4-89/023, Cincinnati, USA.
  • Freundlich H.M.F., 1906. Über die adsorption in losungen, Journal of Physical Chemistry, 57A, 385–470. https://doi.org/10.1515/zpch-1907-5723
  • Gode F., Pehlivan E., 2005. Removal of Cr(VI) from aqueous solution by two Lewatit anion exchange resins, Journal of Hazardous Materials, B119, 175–182. https://doi.org/10.1016/j.jhazmat.2004.12.004
  • Groman E.V., Menz E.T., Enriquez P.M., Jung C., Lewis J.M., Josephson L., 1996. Delivery of therapeutic agents to receptors using polysaccharides, United States Patent, 5554386.
  • Ho Y.S., McKay G., 1999. Pseudo-second order model for sorption processes, Process Biochemistry, 34 (1999) 451-465. https://doi.org/10.1016/s0032-9592(98)00112-5
  • Keihanfar M., Mirjalili B.B.F. and Bamoniri A., 2023. Sb(III)/Gum Arabic composite as a new natural-based environmentally green catalyst for the one-pot pseudo-four-component synthesis of 2H-indazolo[2,1-b] phthalazinetriones. RSC Advanced, 13, 17869-17873. https://doi.org/10.1039/d3ra02556j
  • Langmuir I., 1916. The constitution and fundamental properties of solids and liquids, Journal of American Chemical Society 38, 2221–2295. https://doi.org/10.1016/s0016-0032(17)90938-x
  • Leong Y.K., Seah U., Chu S.Y., Ong B.C., 2001. Effect of gum arabic macro- molecules on surface forces in oxide dispersion, Colloid and Surface Science, 182, 263–268. https://doi.org/10.1016/S0927-7757(00)00826-8
  • Mao T., Lin L., Shi X., Cheng Y., Luo, X., Fang C., 2023. Research Progress of Treatment Technology and Adsorption Materials for Removing Chromate in the Environment. Materials, 16, 2979. https://doi.org/10.3390/ma16082979
  • Maity D., Agrawal D.C., 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials, 308, 46. https://doi.org/10.1016/j.jmmm.2006.05.00
  • Murlidhara H.S., 1986. Advances in Solid–Liquid Separation, Batelle Press, Colombus Richland, Ohio, ISBN 10: 0851863639 / ISBN 13: 9780851863634
  • Pehlivan E., Cetin S., 2009. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer, Journal of Hazardous Materials 163, 448–453. https://doi.org/10.1016/j.jhazmat.2008.06.115
  • Reis A.V., Guilherme M.R., Cavalcanti O.A., Rubira A.F., Muniz E.C., 2006. Synthesis and characterization of pH responsive hydrogels based on chemically modified arabic gum polysaccharide, Polymer 47, 2023–2029. https://doi.org/10.1016/j.polymer.2006.01.058
  • Saha B., Gill R.J., Bailey D.G., Kabay N., Arda M., 2004. Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336, Reactive Functional Polymer, 60, 223–244. https://doi.org/10.1016/j.reactfunctpolym.2004.03.003
  • Seid S.M., Gonfa G., 2022. Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environmental Challenges, 8, 100574. https://doi.org/10.1016/j.envc.2022.100574
  • Selimoğlu F., 2023. Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23 (2023) 021102 (306-315). https://doi.org/10.35414/akufemubid.1224249
  • Sujana M.G., Thakur R.S., Rao S.B., 1998. Removal of Fluoride from Aqueous Solution by Using Alum Sludge, Journal of Colloid Interface Science, 206, 94–101. https://doi.org/10.1006/jcis.1998.5611
  • Vijayaraj A.S., Mohandass C., Joshi D., Rajput N., 2018. Effective bioremediation and toxicity assessment of tannery wastewaters treated with indigenous bacteria, 3 Biotech, 8(10), 428. https://doi.org/10.1007/s13205-018-1444-3
  • Weltrowski M., Martel B., Morcellet M., 1996. Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium, Journal of Applied Polymer Science, 59, 647–654. https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<647
  • Xanthopoulou M., Katsoyiannis I.A., 2023. Enhanced Adsorption of Chromate and Arsenate Ions from Contaminated Water with Emphasis on Polyethylenimine Modified Materials: A Review. Separations, 10, 441. https://doi.org/10.3390/separations10080441 https://byjus.com/chemistry/gum-arabic/
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Analytical Chemistry (Other), Physical Chemistry (Other)
Journal Section Research Article
Authors

İlker Akın 0000-0002-8683-0210

Egemen Foto 0000-0002-0305-5467

Publication Date July 23, 2024
Submission Date January 18, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Akın, İ., & Foto, E. (2024). Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması. Karaelmas Fen Ve Mühendislik Dergisi, 14(2), 52-60. https://doi.org/10.7212/karaelmasfen.1421942
AMA Akın İ, Foto E. Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması. Karaelmas Fen ve Mühendislik Dergisi. July 2024;14(2):52-60. doi:10.7212/karaelmasfen.1421942
Chicago Akın, İlker, and Egemen Foto. “Arap Zamkı Modifiyeli Manyetik Nanopartiküller Ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması”. Karaelmas Fen Ve Mühendislik Dergisi 14, no. 2 (July 2024): 52-60. https://doi.org/10.7212/karaelmasfen.1421942.
EndNote Akın İ, Foto E (July 1, 2024) Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması. Karaelmas Fen ve Mühendislik Dergisi 14 2 52–60.
IEEE İ. Akın and E. Foto, “Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması”, Karaelmas Fen ve Mühendislik Dergisi, vol. 14, no. 2, pp. 52–60, 2024, doi: 10.7212/karaelmasfen.1421942.
ISNAD Akın, İlker - Foto, Egemen. “Arap Zamkı Modifiyeli Manyetik Nanopartiküller Ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması”. Karaelmas Fen ve Mühendislik Dergisi 14/2 (July 2024), 52-60. https://doi.org/10.7212/karaelmasfen.1421942.
JAMA Akın İ, Foto E. Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:52–60.
MLA Akın, İlker and Egemen Foto. “Arap Zamkı Modifiyeli Manyetik Nanopartiküller Ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 14, no. 2, 2024, pp. 52-60, doi:10.7212/karaelmasfen.1421942.
Vancouver Akın İ, Foto E. Arap Zamkı Modifiyeli Manyetik Nanopartiküller ile Sulu Çözeltilerden Kromat İyonlarının Uzaklaştırılması. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(2):52-60.