Research Article
BibTex RIS Cite

Kuaterniyon Değerli g-Metrik Uzayda Yakınsaklık Üzerine

Year 2024, Volume: 14 Issue: 3, 106 - 114, 25.11.2024

Abstract

Bu makalede, kuaterniyon değerli g-metrik uzayda çift dizilerin yakınsama kavramı tanıtılıp incelenmekte, bazı temel özellikler de ele alınmaktadır. Ayrıca, bu bağlamda istatistiksel yakınsama ayrıntılı olarak incelenip tanımlanmaktadır. Son bölümde ise, kuaterniyon değerli g-metrik uzayların istatistiksel yakınsaması ile güçlü toplanabilirlik arasındaki ilişkiye odaklanılmakta ve bu bağlantının sonuçları tartışılmaktadır.

Project Number

This study was supported by Süleyman Demirel University Scientific Research Projects Coordination Unit. Project Number: FYL-2024-9258.

References

  • Abazari, R. 2021. Statistical convergence in probabilistic generalized metric spaces wrt strong topology. J. Inequal Appl., 2021(134): 1-11. Doi: 10.1186/s13660-021-02669-w
  • Adewale, O.K., Olaleru, J., Akewe, H. 2019. Fixed point theorems on a quaternion-valued G metric spaces. Commun. Nonlinear Sci., 7(1): 73-81.
  • Azam, A., Fisher, B., Khan, M. 2011. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim., 32(3): 243-253. Doi:10.1080/01630563.2011.533046
  • Choi, H., Kim, S., Yang, S.Y. 2018. Structure for g-metric spaces and related fixed point theorems. arXiv preprint arXiv:1804.03651.
  • Dhage, B.C. 1992. Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc., 84(1): 329-336
  • Fast, H. 1951. Sur la convergence statistique. Colloq. Math., 2: 241-24.
  • Gähler, S. 1966. Zur geometric 2-metriche raume. Rev. Roumaine Math. Pures Appl., 11: 664-669.
  • Ha, K.S., Cho, Y.J., White, A. 1988. Strictly convex and strictly 2-convex linear 2-normed spaces. Math. Japon., 33: 375-384.
  • Jan, A.H., Jalal, T. 2023. On the structure and statistical convergence of quaternion valued g-metric space: Bol. Soc. Paran Mat., to appear (2023)
  • Khamsi, M.A. 2015. Generalized metric spaces: A survey. J. Fixed Point Theory Appl., 17, (2015), 455-475. Doi: 10.1007/s11784-015-0232-5
  • Moricz, F. 2003. Statistical convergence of multiple sequences. Arch. Math., 81: 82-89. Doi: 10.1007/s00013-003-0506-9
  • Mursaleen, M., Edely, O.H.H. 2003. Statistical convergence of double sequences. J. Math. Anal. Appl., 288(1): 223-231. Doi: 10.1016/j.jmaa.2003.08.004
  • Mustafa, Z., Sims, B. 2003. Concerninig D-metric spaces. Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, Valencia (Spain), 189-198.
  • Mustafa, Z., Sims, B. 2006. A new approach to generalized metric spaces. J. Nonlinear Convex Anal., 7(2): 289-297.
  • Naidu, S.V.R., Rao, K.P.R., Rao, N.S. 2005. On the concepts of balls in a D-metric space. Int.J. Math. Math. Sci., 1: 133-141.
  • Tripathy, B.C. 2003. Statistically convergent double sequences. Tamkang J. Math., 34(3): 231-237. Doi: 10.5556/j.tkjm.34.2003.314

On Convergence in Quaternion-Valued g-Metric Space

Year 2024, Volume: 14 Issue: 3, 106 - 114, 25.11.2024

Abstract

This study presents and investigates the notion of convergence for double sequences in the quaternion-valued g-metric space, as well as a review of certain fundamental features. Moreover, statistical convergence in this context is examined and defined in detail. The final section, focusing on the relationship between the statistical convergence of quaternion-valued g-metric spaces and strong summability, delves into this connection and discusses its implications.

Project Number

This study was supported by Süleyman Demirel University Scientific Research Projects Coordination Unit. Project Number: FYL-2024-9258.

References

  • Abazari, R. 2021. Statistical convergence in probabilistic generalized metric spaces wrt strong topology. J. Inequal Appl., 2021(134): 1-11. Doi: 10.1186/s13660-021-02669-w
  • Adewale, O.K., Olaleru, J., Akewe, H. 2019. Fixed point theorems on a quaternion-valued G metric spaces. Commun. Nonlinear Sci., 7(1): 73-81.
  • Azam, A., Fisher, B., Khan, M. 2011. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim., 32(3): 243-253. Doi:10.1080/01630563.2011.533046
  • Choi, H., Kim, S., Yang, S.Y. 2018. Structure for g-metric spaces and related fixed point theorems. arXiv preprint arXiv:1804.03651.
  • Dhage, B.C. 1992. Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc., 84(1): 329-336
  • Fast, H. 1951. Sur la convergence statistique. Colloq. Math., 2: 241-24.
  • Gähler, S. 1966. Zur geometric 2-metriche raume. Rev. Roumaine Math. Pures Appl., 11: 664-669.
  • Ha, K.S., Cho, Y.J., White, A. 1988. Strictly convex and strictly 2-convex linear 2-normed spaces. Math. Japon., 33: 375-384.
  • Jan, A.H., Jalal, T. 2023. On the structure and statistical convergence of quaternion valued g-metric space: Bol. Soc. Paran Mat., to appear (2023)
  • Khamsi, M.A. 2015. Generalized metric spaces: A survey. J. Fixed Point Theory Appl., 17, (2015), 455-475. Doi: 10.1007/s11784-015-0232-5
  • Moricz, F. 2003. Statistical convergence of multiple sequences. Arch. Math., 81: 82-89. Doi: 10.1007/s00013-003-0506-9
  • Mursaleen, M., Edely, O.H.H. 2003. Statistical convergence of double sequences. J. Math. Anal. Appl., 288(1): 223-231. Doi: 10.1016/j.jmaa.2003.08.004
  • Mustafa, Z., Sims, B. 2003. Concerninig D-metric spaces. Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, Valencia (Spain), 189-198.
  • Mustafa, Z., Sims, B. 2006. A new approach to generalized metric spaces. J. Nonlinear Convex Anal., 7(2): 289-297.
  • Naidu, S.V.R., Rao, K.P.R., Rao, N.S. 2005. On the concepts of balls in a D-metric space. Int.J. Math. Math. Sci., 1: 133-141.
  • Tripathy, B.C. 2003. Statistically convergent double sequences. Tamkang J. Math., 34(3): 231-237. Doi: 10.5556/j.tkjm.34.2003.314
There are 16 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other), Applied Mathematics (Other)
Journal Section Research Articles
Authors

Saime Kolancı 0000-0001-8056-0072

Mehmet Gürdal 0000-0003-0866-1869

Ömer Kişi 0000-0001-6844-3092

Project Number This study was supported by Süleyman Demirel University Scientific Research Projects Coordination Unit. Project Number: FYL-2024-9258.
Publication Date November 25, 2024
Submission Date June 21, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Kolancı, S., Gürdal, M., & Kişi, Ö. (2024). On Convergence in Quaternion-Valued g-Metric Space. Karaelmas Fen Ve Mühendislik Dergisi, 14(3), 106-114. https://doi.org/10.7212/karaelmasfen.1503070
AMA Kolancı S, Gürdal M, Kişi Ö. On Convergence in Quaternion-Valued g-Metric Space. Karaelmas Fen ve Mühendislik Dergisi. November 2024;14(3):106-114. doi:10.7212/karaelmasfen.1503070
Chicago Kolancı, Saime, Mehmet Gürdal, and Ömer Kişi. “On Convergence in Quaternion-Valued G-Metric Space”. Karaelmas Fen Ve Mühendislik Dergisi 14, no. 3 (November 2024): 106-14. https://doi.org/10.7212/karaelmasfen.1503070.
EndNote Kolancı S, Gürdal M, Kişi Ö (November 1, 2024) On Convergence in Quaternion-Valued g-Metric Space. Karaelmas Fen ve Mühendislik Dergisi 14 3 106–114.
IEEE S. Kolancı, M. Gürdal, and Ö. Kişi, “On Convergence in Quaternion-Valued g-Metric Space”, Karaelmas Fen ve Mühendislik Dergisi, vol. 14, no. 3, pp. 106–114, 2024, doi: 10.7212/karaelmasfen.1503070.
ISNAD Kolancı, Saime et al. “On Convergence in Quaternion-Valued G-Metric Space”. Karaelmas Fen ve Mühendislik Dergisi 14/3 (November 2024), 106-114. https://doi.org/10.7212/karaelmasfen.1503070.
JAMA Kolancı S, Gürdal M, Kişi Ö. On Convergence in Quaternion-Valued g-Metric Space. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:106–114.
MLA Kolancı, Saime et al. “On Convergence in Quaternion-Valued G-Metric Space”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 14, no. 3, 2024, pp. 106-14, doi:10.7212/karaelmasfen.1503070.
Vancouver Kolancı S, Gürdal M, Kişi Ö. On Convergence in Quaternion-Valued g-Metric Space. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(3):106-14.