Research Article
BibTex RIS Cite

Türkiye’den Toplanan Hydumrufescens, Macrolepiota procera Mantarlarındaki Metal Miktarlarının Belirlenmesi

Year 2018, Volume: 4 Issue: 2, 15 - 21, 28.12.2018

Abstract

Yabani mantarlar, uzun zamandan beri birçok ülkede lezzetli bir yiyecek
olarak kabul edilmiştir. Bununla birlikte, mantarların bazıları özellikle fazla
tüketilde insan sağlığına zararlı olabilecek kadar fazla ağır metal
biriktirebilir. İklimsel koşullar sayesinde Türkiye yenilebilir mantar türleri
için büyük bir potansiyele sahiptir ve özellikle kırsal alanlarda çeşitli
mantar türleri tüketilmektedir. Bu çalışmada, 2014 yılı Ekim ayında Kastamonu
ormanlarından toplanan, yenilebilir yabani mantar türlerinin (Hydumr ufescens, Macrolepiota procera)
13 metal (Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd) ve 3 Pb izotopu (206Pb,
207Pb ve 208Pb) miktarları araştırılmıştır. araştırılmıştır.
Mantar örnekleri, indüktif olarak eşleştirilmiş plazma - kütle spektrometresi
(ICP-MS) ile analiz edilmiştir. Sonuçlar Macrolepiota
procera
'daki Al ve Mn dışındaki tüm metal miktarının Hydum rufescens'deki metal miktarlarından daha yüksek olduğunu
göstermiştir. Her iki mantar türünde de toksik element konsantrasyonları (Cr,
Cd, As) düşük ve dünya ortalamasının altında bulunmuştur. Sonuç olarak, analiz
edilen yenilebilir yabani mantar türlerinin tüketimi ile ilişkili herhangi bir
sağlık riski olmadığı söylenebilir.

References

  • Alonso J., García M., Pérez-López M., Melgar M. 2003. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol.,44: 180-188.
  • Baruthio F. 1992. Toxic effects of chromium and its compounds. Biol. Trace Elem. Res., 32(1),145-153.
  • Cocchi L., Vescovi L., Petrini L.E.,Petrini O. 2006. Heavy metals in edible mushrooms in Italy. Food Chem., 98: 277-284.
  • Crichton R.R., Wilmet S., Legssyer R.,Ward R.J. 2002. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorg. Biochem., 91: 9-18.
  • Çayır A., Coşkun M., Coşkun M. 2010. The heavy metal content of wild edible mushroom samples collected in Çanakkale Province, Turkey. Biol. Trace Elem. Res., 134: 212-219.
  • Falandysz J. 2008. Selenium in edible mushrooms. J. Environ. Sci. Heal. C, 26: 256-299.
  • Flyvholm M.-A., Nielsen G.D., Andersen A. 1984. Nickel content of food and estimation of dietary intake. Z. Lebensm. Unters. F. A, 179: 427-431.
  • Frederickson C. J., Suh S.W., Silva D., Frederickson C.J., Thompson R.B. 2000. Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr., 130: 1471S-1483S.
  • Garcia M., Alonso J., Fernández M., Melgar M. 1998. Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Arch. Environ. Contam. Toxicol.,34: 330-335.
  • García M.Á., Alonso J., Melgar M.J. 2009. Lead in edible mushrooms: levels and bioaccumulation factors. J. Hazard. Mater., 167: 777-783.
  • Grubbs R.D., Maguire M. E. 1986. Magnesium as a regulatory cation: criteria and evaluation. Magnesium, 6: 113-127.
  • Institute of Medicine 2001. Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.Retrieved from https://doi.org/10.17226/10026.
  • Kalač P., Svoboda L.R. 2000. A review of trace element concentrations in edible mushrooms. Food Chem., 69(3), 273-281.
  • Kobayashi M., Shimizu S. 1999. Cobalt proteins. Eur. J. Biochem., 261: 1-9.
  • Liu K., Xiao X., Wang J., Chen C.Y.O., Hu H. 2017. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotussanghuang. LWT - Food Sci. Technol., 82: 154-161.
  • Manzi P., Aguzzi A., Pizzoferrato L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem., 73(3), 321-325.
  • Mendil D., Uluözlü Ö.D., Hasdemir E., Çaǧlar A. 2004. Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem., 88: 281-285.
  • Michelot D., Siobud E., Doré J.-C., Viel C., Poirier F. 1998. Update on metal content profiles in mushrooms—toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon, 36: 1997-2012.
  • Mleczek M., Niedzielski P., Kalač P., Budka A., Siwulski M., Gąsecka M., Rzymski P., Magdziak Z., Sobieralski K. 2016. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ. Sci. Pollut. Res., 23: 16280-16295.
  • Muszyńska B., Kała K., Sułkowska-Ziaja K. 2017. Edible mushrooms and their in vitro culture as a source of anticancer compounds. Biotechnology and Production of Anti-Cancer Compounds, Springer, 231-251
  • Muszynska B., Sulkowska-Ziaja K., Wolkowska M., Ekiert H. 2011. Chemical, pharmacological, and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm.(Agaricomycetideae): a review. Int. J. Med. Mushrooms, 13: 167-175.
  • Müller M., Anke M., Illing-Günther H. 1997. Aluminium in wild mushrooms and cultivated Agaricus bisporus. Z. Lebensm. Unters. F. A,, 205: 242-247.
  • Ouzouni P., Riganakos K. 2007. Nutritional value and metal content profile of Greek wild edible fungi. Acta Alimen., 36: 99-110.
  • Ouzouni P. K., Petridis D., Koller W.-D., Riganakos K.A. 2009. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem., 115: 1575-1580.
  • Ouzouni P.K., Veltsistas P.G., Paleologos E.K., Riganakos K.A. 2007. Determination of metal content in wild edible mushroom species from regions of Greece. Journal of Food Composition and Analysis, 20: 480-486.
  • Piepponen S., Liukkonen-Lilja H., Kuusi T. 1983. The selenium content of edible mushrooms in Finland. Z. Lebensm. Unters. Forsch., 177: 257-260.
  • Prabu M., Kumuthakalavallia R. 2016. Antioxidant activity of oyster mushroom (Pleurotusflorida [Momt.] Singer) and milky mushroom (Calocybeindica P and C), Int. J. Curr. Pharm. Res., 8: 1-4.
  • Prasad M. 1995. Cadmium toxicity and tolerance in vascular plants. Environ. Exper. Bot., 35(4), 525-545.
  • Ravesteyn A.H. 1944. Metabolism of copper in man. Acta Med. Scand., 118: 163-196.
  • Sevindik, M., Eraslan, C. E., Akgül, H. 2015. Determination of Heavy Metal Content of Some Macrofungi Species. Journal of Forestry, 11: 48-53.
  • Sun L., Chang W., Bao C., Zhuang Y. 2017. Metal Contents, bioaccumulation, and health risk assessment in wild edible boletaceae mushrooms. J. Food Sci., doi: 10.1111/1750-3841.13698
  • Tüzen M., Turkekul I., Hasdemir E., Mendil D., Sari H. 2003. Atomic absorption spectrometric determination of trace metal contents of mushroom samples from Tokat, Turkey. Anal. Lett., 36: 1401-1410.
  • Vetter J. 1994. Data on arsenic and cadmium contents of some common mushrooms. Toxicon, 32: 11-15.
  • Vetter J. 2004. Arsenic content of some edible mushroom species. Eur. Food Res. Technol., 219: 71-74.
  • Wani B. A., Bodha R., Wani A. 2010. Nutritional and medicinal importance of mushrooms. J. Med. Plants Res., 4: 2598-2604.
  • Wetherill G. 1963. Discordant uranium‐lead ages: 2. Disordant ages resulting from diffusion of lead and uranium. J. Geophys. Res., 68: 2957-2965.

Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey

Year 2018, Volume: 4 Issue: 2, 15 - 21, 28.12.2018

Abstract

Wild-growing mushrooms have been considered as a delicious food in many
countries for a long time. However, some of them can accumulate large
concentrations of heavy metals, which can be dangerous to human health
particularly, when the intake is high. Thanks to the climatic conditions,
Turkey has also a great potential for wild edible mushroom species and several
species have been consumed especially in rural areas. In this study, 13 metals
(Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd) and 3 isotopes of Pb (206Pb,
207Pb and 208Pb) contents in two different wild-growing
edible mushroom species (Hydumrufescens,
Macrolepiota procera
) collected from Kastamonu forest in October of 2014,
in Turkey were investigated. Mushroom samples were analyzed by inductively
coupled plasma mass spectrometry (ICP-MS). The results showed that metal
contents in Macrolepiota procera were
higher than the metal contents in Hydumrufescens
except Al and Mn. All of the toxic element concentrations (Cr, Cd, As) were low
and below the world average in both mushroom species. Consequently, there was
no any health risk associated with consumption of the analyzed wild edible
mushroom species.

References

  • Alonso J., García M., Pérez-López M., Melgar M. 2003. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol.,44: 180-188.
  • Baruthio F. 1992. Toxic effects of chromium and its compounds. Biol. Trace Elem. Res., 32(1),145-153.
  • Cocchi L., Vescovi L., Petrini L.E.,Petrini O. 2006. Heavy metals in edible mushrooms in Italy. Food Chem., 98: 277-284.
  • Crichton R.R., Wilmet S., Legssyer R.,Ward R.J. 2002. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorg. Biochem., 91: 9-18.
  • Çayır A., Coşkun M., Coşkun M. 2010. The heavy metal content of wild edible mushroom samples collected in Çanakkale Province, Turkey. Biol. Trace Elem. Res., 134: 212-219.
  • Falandysz J. 2008. Selenium in edible mushrooms. J. Environ. Sci. Heal. C, 26: 256-299.
  • Flyvholm M.-A., Nielsen G.D., Andersen A. 1984. Nickel content of food and estimation of dietary intake. Z. Lebensm. Unters. F. A, 179: 427-431.
  • Frederickson C. J., Suh S.W., Silva D., Frederickson C.J., Thompson R.B. 2000. Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr., 130: 1471S-1483S.
  • Garcia M., Alonso J., Fernández M., Melgar M. 1998. Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Arch. Environ. Contam. Toxicol.,34: 330-335.
  • García M.Á., Alonso J., Melgar M.J. 2009. Lead in edible mushrooms: levels and bioaccumulation factors. J. Hazard. Mater., 167: 777-783.
  • Grubbs R.D., Maguire M. E. 1986. Magnesium as a regulatory cation: criteria and evaluation. Magnesium, 6: 113-127.
  • Institute of Medicine 2001. Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.Retrieved from https://doi.org/10.17226/10026.
  • Kalač P., Svoboda L.R. 2000. A review of trace element concentrations in edible mushrooms. Food Chem., 69(3), 273-281.
  • Kobayashi M., Shimizu S. 1999. Cobalt proteins. Eur. J. Biochem., 261: 1-9.
  • Liu K., Xiao X., Wang J., Chen C.Y.O., Hu H. 2017. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotussanghuang. LWT - Food Sci. Technol., 82: 154-161.
  • Manzi P., Aguzzi A., Pizzoferrato L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem., 73(3), 321-325.
  • Mendil D., Uluözlü Ö.D., Hasdemir E., Çaǧlar A. 2004. Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem., 88: 281-285.
  • Michelot D., Siobud E., Doré J.-C., Viel C., Poirier F. 1998. Update on metal content profiles in mushrooms—toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon, 36: 1997-2012.
  • Mleczek M., Niedzielski P., Kalač P., Budka A., Siwulski M., Gąsecka M., Rzymski P., Magdziak Z., Sobieralski K. 2016. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ. Sci. Pollut. Res., 23: 16280-16295.
  • Muszyńska B., Kała K., Sułkowska-Ziaja K. 2017. Edible mushrooms and their in vitro culture as a source of anticancer compounds. Biotechnology and Production of Anti-Cancer Compounds, Springer, 231-251
  • Muszynska B., Sulkowska-Ziaja K., Wolkowska M., Ekiert H. 2011. Chemical, pharmacological, and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm.(Agaricomycetideae): a review. Int. J. Med. Mushrooms, 13: 167-175.
  • Müller M., Anke M., Illing-Günther H. 1997. Aluminium in wild mushrooms and cultivated Agaricus bisporus. Z. Lebensm. Unters. F. A,, 205: 242-247.
  • Ouzouni P., Riganakos K. 2007. Nutritional value and metal content profile of Greek wild edible fungi. Acta Alimen., 36: 99-110.
  • Ouzouni P. K., Petridis D., Koller W.-D., Riganakos K.A. 2009. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem., 115: 1575-1580.
  • Ouzouni P.K., Veltsistas P.G., Paleologos E.K., Riganakos K.A. 2007. Determination of metal content in wild edible mushroom species from regions of Greece. Journal of Food Composition and Analysis, 20: 480-486.
  • Piepponen S., Liukkonen-Lilja H., Kuusi T. 1983. The selenium content of edible mushrooms in Finland. Z. Lebensm. Unters. Forsch., 177: 257-260.
  • Prabu M., Kumuthakalavallia R. 2016. Antioxidant activity of oyster mushroom (Pleurotusflorida [Momt.] Singer) and milky mushroom (Calocybeindica P and C), Int. J. Curr. Pharm. Res., 8: 1-4.
  • Prasad M. 1995. Cadmium toxicity and tolerance in vascular plants. Environ. Exper. Bot., 35(4), 525-545.
  • Ravesteyn A.H. 1944. Metabolism of copper in man. Acta Med. Scand., 118: 163-196.
  • Sevindik, M., Eraslan, C. E., Akgül, H. 2015. Determination of Heavy Metal Content of Some Macrofungi Species. Journal of Forestry, 11: 48-53.
  • Sun L., Chang W., Bao C., Zhuang Y. 2017. Metal Contents, bioaccumulation, and health risk assessment in wild edible boletaceae mushrooms. J. Food Sci., doi: 10.1111/1750-3841.13698
  • Tüzen M., Turkekul I., Hasdemir E., Mendil D., Sari H. 2003. Atomic absorption spectrometric determination of trace metal contents of mushroom samples from Tokat, Turkey. Anal. Lett., 36: 1401-1410.
  • Vetter J. 1994. Data on arsenic and cadmium contents of some common mushrooms. Toxicon, 32: 11-15.
  • Vetter J. 2004. Arsenic content of some edible mushroom species. Eur. Food Res. Technol., 219: 71-74.
  • Wani B. A., Bodha R., Wani A. 2010. Nutritional and medicinal importance of mushrooms. J. Med. Plants Res., 4: 2598-2604.
  • Wetherill G. 1963. Discordant uranium‐lead ages: 2. Disordant ages resulting from diffusion of lead and uranium. J. Geophys. Res., 68: 2957-2965.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ayşenur Gürgen

Sibel Yıldız

Uğur Çevik

Ümit Cafer Yıldız

Publication Date December 28, 2018
Submission Date July 24, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Gürgen, A., Yıldız, S., Çevik, U., Yıldız, Ü. C. (2018). Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey. Kastamonu University Journal of Engineering and Sciences, 4(2), 15-21.
AMA Gürgen A, Yıldız S, Çevik U, Yıldız ÜC. Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey. KUJES. December 2018;4(2):15-21.
Chicago Gürgen, Ayşenur, Sibel Yıldız, Uğur Çevik, and Ümit Cafer Yıldız. “Assessment of Metal Contents in Hydumrufescens, Macrolepiota Procera Mushrooms Collected from Turkey”. Kastamonu University Journal of Engineering and Sciences 4, no. 2 (December 2018): 15-21.
EndNote Gürgen A, Yıldız S, Çevik U, Yıldız ÜC (December 1, 2018) Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey. Kastamonu University Journal of Engineering and Sciences 4 2 15–21.
IEEE A. Gürgen, S. Yıldız, U. Çevik, and Ü. C. Yıldız, “Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey”, KUJES, vol. 4, no. 2, pp. 15–21, 2018.
ISNAD Gürgen, Ayşenur et al. “Assessment of Metal Contents in Hydumrufescens, Macrolepiota Procera Mushrooms Collected from Turkey”. Kastamonu University Journal of Engineering and Sciences 4/2 (December 2018), 15-21.
JAMA Gürgen A, Yıldız S, Çevik U, Yıldız ÜC. Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey. KUJES. 2018;4:15–21.
MLA Gürgen, Ayşenur et al. “Assessment of Metal Contents in Hydumrufescens, Macrolepiota Procera Mushrooms Collected from Turkey”. Kastamonu University Journal of Engineering and Sciences, vol. 4, no. 2, 2018, pp. 15-21.
Vancouver Gürgen A, Yıldız S, Çevik U, Yıldız ÜC. Assessment of Metal Contents in Hydumrufescens, Macrolepiota procera Mushrooms Collected from Turkey. KUJES. 2018;4(2):15-21.

18397   |   18396|