Research Article
BibTex RIS Cite
Year 2020, Volume: 6 Issue: 2, 107 - 113, 24.12.2020

Abstract

References

  • [1]. Wilmers, W. (2002, September). The revised German regulations for the use of geosynthetics in road construction. In Geosynthetics: State Of The Art-Recent Developments. Proceedings Of The Seventh International Conference On Geosynthetics, 7(4), 22-27
  • [2]. Van Santvoort, G. P. (Ed.). (1994). Geotextiles and geomembranes in civil engineering. CRC Press.
  • [3]. Webster, S. L., & Santoni, R. L. (1997). Contingency airfield and road construction using geosynthetic fiber stabilization of sands (Vol. 97, No. 4). US Army Engineer Waterways Experiment Station.
  • [4]. Bloise, N., & Ucciardo, S. (2000). On site test of reinforced freeway with high-strength geosynthetics. In EUROGEO 2000: Proceedings Of The 2nd European Geosynthetics Conference. Volume 1: Mercer Lecture, Keynote Lectures, Geotechnical Applications (Vol. 1).
  • [5]. Han, J., & Thakur, J. K. (2015). Sustainable roadway construction using recycled aggregates with geosynthetics. Sustainable Cities and Society, 14, 342-350.
  • [6]. Collin, J. G., Watson, C. H., & Han, J. (2005). Column-supported embankment solves time constraint for new road construction. In Contemporary issues in foundation engineering (pp. 1-10).
  • [7]. Hayden, S. A., Humphrey, D. N., Christopher, B. R., Henry, K. S., & Fetten, C. (1999). Effectiveness of geosynthetics for roadway construction in cold regions: results of a multi-use test section (No. Volume 2).
  • [8]. Powell, W., Keller, G. R., & Brunette, B. (1999). Applications for geosynthetics on forest service low-volume roads. Transportation Research Record, 1652(1), 113-120.
  • [9]. Kinney, T. C., & Connor, B. (1987). Geosynthetics supporting embankments over voids. Journal of cold regions engineering, 1(4), 158-170.
  • [10]. Adams, C. A., Apraku, E., & Opoku-Boahen, R. (2015). Effect of triaxial geogrid reinforcement on CBR strength of natural gravel soil for road pavements. J. Civ. Eng. Res, 5(2), 45-51.
  • [11]. Anniello, P. J., Zhao, A., & Capra, G. (2003). U.S. Patent No. 6,505,996. Washington, DC: U.S. Patent and Trademark Office.
  • [12]. Vinod, P., & Minu, M. (2010). Use of coir geotextiles in unpaved road construction. Geosynthetics International, 17(4), 220-227.
  • [13]. Laurinavičius, A., Oginskas, R., & Žilionienė, D. (2006). Research and evaluation of Lithuanian asphalt concrete road pavements reinforced by geosynthetics. The Baltic Journal of Road and Bridge Engineering, 1(1), 21-28.
  • [14]. Brandon, T. L., Al-Qadi, I. L., Lacina, B. A., & Bhutta, S. A. (1996). Construction and instrumentation of geosynthetically stabilized secondary road test sections. Transportation research record, 1534(1), 50-57.
  • [15]. Vieira, C. S., & Pereira, P. M. (2016). Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests. Geosynthetics International, 23(1), 62-70.
  • [16]. Tutumluer, E., & Kwon, J. (2006). Evaluation of geosynthetics use for pavement subgrade restraint and working platform construction. In Geotechnical Applications for Transportation Infrastructure: Featuring the Marquette Interchange Project in Milwaukee, Wisconsin (pp. 96-107).
  • [17]. Tingle, J. S., & Jersey, S. R. (2007). Empirical design methods for geosynthetic-reinforced low-volume roads. Transportation research record, 1989(1), 91-101.
  • [18]. Kinney, T. C. (1996). Use of geosynthetics in road and airfield construction in cold regions. Roads and Airfields in Cold Regions: A State of The Practice Report. ASCE, 271-288.
  • [19]. Ai-Qadi, I. L., & Appea, A. K. (2003). Eight-year field performance of secondary road incorporating geosynthetics at subgrade-base interface. Transportation research record, 1849(1), 212-220.
  • [20]. Tingle, J. S., & Jersey, S. R. (2005). Cyclic plate load testing of geosynthetic-reinforced unbound aggregate roads. Transportation research record, 1936(1), 60-69.
  • [21]. Douglas, R. A., & Valsangkar, A. J. (1992). Unpaved geosynthetic-built resource access roads: stiffness rather than rut depth as the key design criterion. Geotextiles and Geomembranes, 11(1), 45-59.
  • [22]. Vaitkus, A., Laurinavičius, A., & Čygas, D. (2006). Site Damage Tests Of Geotextiles Used For Layer Separation In Road Construction. Baltic Journal of Road & Bridge Engineering (Baltic Journal of Road & Bridge Engineering), 1(1), 29-37.
  • [23]. Vaitkus, A., Šiukščius, A., & Ramūnas, V. (2014). Regulations for use of geosynthetics for road embankments and subgrades. The Baltic Journal of Road and Bridge Engineering, 9(2), 88-93.
  • [24]. Yan, L., Yang, J., Gao, Y., & Liu, B. (2006). Numerical analysis of geosynthetics treatment in old road widening. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 25(8), 1670-1675.
  • [25]. Anderson, R. P., Molina, F. G., Salazar, R. Z., Diaz, A. L., Sánchez, N., & Jorge, A. (2003). Geosynthetics facilitate road construction and mitigate environmental impact in Amazon Basin rainforest–10 years of performance.
  • [26]. Vaitkus, A., Čygas, D., & Laurinavičius, A. (2010). Use of geosynthetics for the strengthening of road pave ment structure in Lithuania. In Geosynthetics for a challenging world: 9th International Conference on Geosynthetics (Vol. 3, pp. 1575-1580).
  • [27]. Santoni, R. L., Tingle, J. S., & Webster, S. L. (2001). Engineering properties of sand-fiber mixtures for road construction. Journal of geotechnical and geoenvironmental engineering, 127(3), 258-268.
  • [28]. Frischknecht, R., Stucki, M., Büsser, S., & Itten, R. (2012). Comparative life cycle assessment of geosynthetics versus conventional construction materials. Ground Engineering.
  • [29]. Stucki, M., Büsser, S., Itten, R., Frischknecht, R., & Wallbaum, H. (2011). Comparative life cycle assessment of geosynthetics versus conventional construction materials. ESU-services Ltd. Uster, ETH Zürich, Switzerland, Commissioned by the European Association for Geosynthetic Manufacturers (EAGM).
  • [30]. Han, J., & Collin, J. G. (2005). Geosynthetic support systems over pile foundations. In Geosynthetics Research and Development in Progress (pp. 1-5).
  • [31]. De Groot, M. B., Den Hoedt, G., & TerMaat, R. J. (Eds.). (1996). Geosynthetics: Applications, Design and Construction. AA Balkema.
  • [32]. Kinney, T., & Connor, B. (1990). Geosynthetic reinforcement of paved road embankments on polygonal ground. Journal of Cold Regions Engineering, 4(2), 102-112.

Use Of Geosynthetics In Road Construction

Year 2020, Volume: 6 Issue: 2, 107 - 113, 24.12.2020

Abstract

Road and Railway Stabilization is the use of geosynthetic reinforcing elements to strengthen the ground in order to work on very soft and weak ground in the construction of asphalted or unpaved vehicle roads and rail systems. The geosynthetics increase the performance and design life of highways and railway construction structures in applications such as geogrids, roads, railways, airports and other earthworks with poor ground strength. Geosynthetics offera much higher value than traditional road construction products and the fast, simple installation process greatly reduces the construction process. On highways, Geosynthetics are placed on the weak base floor before the geosynthetic granular substrate is placed. Geosynthetics protect the structural integrity of the slab and prevent the granular sub-base material from slipping into the weak substrate. The use of geosynthetics extends the maintenance requirement of the flooring that is built on a weak floor.

References

  • [1]. Wilmers, W. (2002, September). The revised German regulations for the use of geosynthetics in road construction. In Geosynthetics: State Of The Art-Recent Developments. Proceedings Of The Seventh International Conference On Geosynthetics, 7(4), 22-27
  • [2]. Van Santvoort, G. P. (Ed.). (1994). Geotextiles and geomembranes in civil engineering. CRC Press.
  • [3]. Webster, S. L., & Santoni, R. L. (1997). Contingency airfield and road construction using geosynthetic fiber stabilization of sands (Vol. 97, No. 4). US Army Engineer Waterways Experiment Station.
  • [4]. Bloise, N., & Ucciardo, S. (2000). On site test of reinforced freeway with high-strength geosynthetics. In EUROGEO 2000: Proceedings Of The 2nd European Geosynthetics Conference. Volume 1: Mercer Lecture, Keynote Lectures, Geotechnical Applications (Vol. 1).
  • [5]. Han, J., & Thakur, J. K. (2015). Sustainable roadway construction using recycled aggregates with geosynthetics. Sustainable Cities and Society, 14, 342-350.
  • [6]. Collin, J. G., Watson, C. H., & Han, J. (2005). Column-supported embankment solves time constraint for new road construction. In Contemporary issues in foundation engineering (pp. 1-10).
  • [7]. Hayden, S. A., Humphrey, D. N., Christopher, B. R., Henry, K. S., & Fetten, C. (1999). Effectiveness of geosynthetics for roadway construction in cold regions: results of a multi-use test section (No. Volume 2).
  • [8]. Powell, W., Keller, G. R., & Brunette, B. (1999). Applications for geosynthetics on forest service low-volume roads. Transportation Research Record, 1652(1), 113-120.
  • [9]. Kinney, T. C., & Connor, B. (1987). Geosynthetics supporting embankments over voids. Journal of cold regions engineering, 1(4), 158-170.
  • [10]. Adams, C. A., Apraku, E., & Opoku-Boahen, R. (2015). Effect of triaxial geogrid reinforcement on CBR strength of natural gravel soil for road pavements. J. Civ. Eng. Res, 5(2), 45-51.
  • [11]. Anniello, P. J., Zhao, A., & Capra, G. (2003). U.S. Patent No. 6,505,996. Washington, DC: U.S. Patent and Trademark Office.
  • [12]. Vinod, P., & Minu, M. (2010). Use of coir geotextiles in unpaved road construction. Geosynthetics International, 17(4), 220-227.
  • [13]. Laurinavičius, A., Oginskas, R., & Žilionienė, D. (2006). Research and evaluation of Lithuanian asphalt concrete road pavements reinforced by geosynthetics. The Baltic Journal of Road and Bridge Engineering, 1(1), 21-28.
  • [14]. Brandon, T. L., Al-Qadi, I. L., Lacina, B. A., & Bhutta, S. A. (1996). Construction and instrumentation of geosynthetically stabilized secondary road test sections. Transportation research record, 1534(1), 50-57.
  • [15]. Vieira, C. S., & Pereira, P. M. (2016). Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests. Geosynthetics International, 23(1), 62-70.
  • [16]. Tutumluer, E., & Kwon, J. (2006). Evaluation of geosynthetics use for pavement subgrade restraint and working platform construction. In Geotechnical Applications for Transportation Infrastructure: Featuring the Marquette Interchange Project in Milwaukee, Wisconsin (pp. 96-107).
  • [17]. Tingle, J. S., & Jersey, S. R. (2007). Empirical design methods for geosynthetic-reinforced low-volume roads. Transportation research record, 1989(1), 91-101.
  • [18]. Kinney, T. C. (1996). Use of geosynthetics in road and airfield construction in cold regions. Roads and Airfields in Cold Regions: A State of The Practice Report. ASCE, 271-288.
  • [19]. Ai-Qadi, I. L., & Appea, A. K. (2003). Eight-year field performance of secondary road incorporating geosynthetics at subgrade-base interface. Transportation research record, 1849(1), 212-220.
  • [20]. Tingle, J. S., & Jersey, S. R. (2005). Cyclic plate load testing of geosynthetic-reinforced unbound aggregate roads. Transportation research record, 1936(1), 60-69.
  • [21]. Douglas, R. A., & Valsangkar, A. J. (1992). Unpaved geosynthetic-built resource access roads: stiffness rather than rut depth as the key design criterion. Geotextiles and Geomembranes, 11(1), 45-59.
  • [22]. Vaitkus, A., Laurinavičius, A., & Čygas, D. (2006). Site Damage Tests Of Geotextiles Used For Layer Separation In Road Construction. Baltic Journal of Road & Bridge Engineering (Baltic Journal of Road & Bridge Engineering), 1(1), 29-37.
  • [23]. Vaitkus, A., Šiukščius, A., & Ramūnas, V. (2014). Regulations for use of geosynthetics for road embankments and subgrades. The Baltic Journal of Road and Bridge Engineering, 9(2), 88-93.
  • [24]. Yan, L., Yang, J., Gao, Y., & Liu, B. (2006). Numerical analysis of geosynthetics treatment in old road widening. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 25(8), 1670-1675.
  • [25]. Anderson, R. P., Molina, F. G., Salazar, R. Z., Diaz, A. L., Sánchez, N., & Jorge, A. (2003). Geosynthetics facilitate road construction and mitigate environmental impact in Amazon Basin rainforest–10 years of performance.
  • [26]. Vaitkus, A., Čygas, D., & Laurinavičius, A. (2010). Use of geosynthetics for the strengthening of road pave ment structure in Lithuania. In Geosynthetics for a challenging world: 9th International Conference on Geosynthetics (Vol. 3, pp. 1575-1580).
  • [27]. Santoni, R. L., Tingle, J. S., & Webster, S. L. (2001). Engineering properties of sand-fiber mixtures for road construction. Journal of geotechnical and geoenvironmental engineering, 127(3), 258-268.
  • [28]. Frischknecht, R., Stucki, M., Büsser, S., & Itten, R. (2012). Comparative life cycle assessment of geosynthetics versus conventional construction materials. Ground Engineering.
  • [29]. Stucki, M., Büsser, S., Itten, R., Frischknecht, R., & Wallbaum, H. (2011). Comparative life cycle assessment of geosynthetics versus conventional construction materials. ESU-services Ltd. Uster, ETH Zürich, Switzerland, Commissioned by the European Association for Geosynthetic Manufacturers (EAGM).
  • [30]. Han, J., & Collin, J. G. (2005). Geosynthetic support systems over pile foundations. In Geosynthetics Research and Development in Progress (pp. 1-5).
  • [31]. De Groot, M. B., Den Hoedt, G., & TerMaat, R. J. (Eds.). (1996). Geosynthetics: Applications, Design and Construction. AA Balkema.
  • [32]. Kinney, T., & Connor, B. (1990). Geosynthetic reinforcement of paved road embankments on polygonal ground. Journal of Cold Regions Engineering, 4(2), 102-112.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Oğuzhan Yavuz Bayraktar 0000-0003-0578-6965

Publication Date December 24, 2020
Submission Date November 23, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Bayraktar, O. Y. (2020). Use Of Geosynthetics In Road Construction. Kastamonu University Journal of Engineering and Sciences, 6(2), 107-113.
AMA Bayraktar OY. Use Of Geosynthetics In Road Construction. KUJES. December 2020;6(2):107-113.
Chicago Bayraktar, Oğuzhan Yavuz. “Use Of Geosynthetics In Road Construction”. Kastamonu University Journal of Engineering and Sciences 6, no. 2 (December 2020): 107-13.
EndNote Bayraktar OY (December 1, 2020) Use Of Geosynthetics In Road Construction. Kastamonu University Journal of Engineering and Sciences 6 2 107–113.
IEEE O. Y. Bayraktar, “Use Of Geosynthetics In Road Construction”, KUJES, vol. 6, no. 2, pp. 107–113, 2020.
ISNAD Bayraktar, Oğuzhan Yavuz. “Use Of Geosynthetics In Road Construction”. Kastamonu University Journal of Engineering and Sciences 6/2 (December 2020), 107-113.
JAMA Bayraktar OY. Use Of Geosynthetics In Road Construction. KUJES. 2020;6:107–113.
MLA Bayraktar, Oğuzhan Yavuz. “Use Of Geosynthetics In Road Construction”. Kastamonu University Journal of Engineering and Sciences, vol. 6, no. 2, 2020, pp. 107-13.
Vancouver Bayraktar OY. Use Of Geosynthetics In Road Construction. KUJES. 2020;6(2):107-13.

18397   |   18396|