Research Article
BibTex RIS Cite

Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method

Year 2024, Volume: 10 Issue: 2, 73 - 80, 25.12.2024
https://doi.org/10.55385/kastamonujes.1559603

Abstract

Yapı ve tesislerin üzerine inşa edildiği zeminlerin mekanik davranışların tam ve doğru olarak tahmin edilmesi inşaat mühendisliği açısından çok önemlidir. Günümüzde gerek kolaylığı gerekse hızlı çözümler sunduğu için zeminler sürekli homojen ortamlar gibi modellenerek çözümler yapılsa da zemin parçacıkların çok fazlı ortamda birleşmesidir. Bu nedenle çalışmada zemin özelliğine daha yakın yaklaşım sunan Discrete Element Method kullanılmıştır. Bu çalışmada, üç eksenli basınç testleri altında homojen granüler malzemelerin davranışı Ayrık Eleman Yöntemi (DEM) kullanılarak modellenmiştir. Partikül ortamları simüle etmek için ideal bir sayısal teknik olan DEM, granüler düzeneklerin değişen sınırlayıcı basınçlara maruz kaldığında mekanik tepkilerini araştırmak için kullanılmıştır. Araştırma, parçacık şeklinin, boyut dağılımının ve temas mekaniğinin, test sırasında malzemenin gerilim-şekil değiştirme ilişkisi ve deformasyon davranışı üzerindeki etkilerine odaklanmıştır. DEM yaklaşımı ve PFC3D kullanılarak üniform kumların üç eksenli basınç testi modellenerek poisson oranı, young modülü ve taşıma kapasitesi tahmin edilmeye çalışılmıştır.

Ethical Statement

Ethics committee approval is not required.

Thanks

Not applicable.

References

  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65.
  • Luding, S. (2008). Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. European journal of environmental and civil engineering, 12(7-8), 785-826.
  • Cundall, P. A. (1971). A computer model for simulating progressive, large-scale movement in blocky rock system. In Proceedings of the international symposium on rock mechanics (Vol. 8, pp. 129-136).
  • Cundall, P. A., & Hart, R. D. (1993). Numerical modeling of discontinua. In Analysis and design methods (pp. 231-243). Pergamon.
  • Bourrier, F., Kneib, F., Chareyre, B., & Fourcaud, T. (2013). Discrete modeling of granular soils reinforcement by plant roots. Ecological Engineering, 61, 646-657.
  • Jiang, M. J., Yu, H. S., & Harris, D. (2006). Discrete element modelling of deep penetration in granular soils. International journal for numerical and analytical methods in geomechanics, 30(4), 335-361.
  • Gu, X., Lu, L., & Qian, J. (2017). Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils. Particuology, 32, 21-29.
  • Ma, X., Lei, H., & Kang, X. (2022). Effects of particle morphology on the shear response of granular soils by discrete element method and 3D printing technology. International Journal for Numerical and Analytical Methods in Geomechanics, 46(11), 2191-2208.
  • Zhang, T., Li, S., Yang, H., & Zhang, F. (2024). Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks. Journal of Rock Mechanics and Geotechnical Engineering.
  • Nasirpur, O., Çelik, S., & Karimi, B. (2024). Modeling the Behavior of Granular Soils with Different Shape Characteristics Behind a Retaining Wall with Discrete Element and PIV Method. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(3), 1609-1626.
  • Luding, S. (1998). Collisions & contacts between two particles. In Physics of dry granular media (pp. 285-304). Dordrecht: Springer Netherlands.
  • Raous, M., Jean, M., & Moreau, J. J. (Eds.). (1995). Contact mechanics. New York: plenum Press.
  • Moreau, J. J. (1994). Sorne numerical methods in multibody dynamics: application to granular materials. European Journal of Mechanics-A/Solids, 13(4-suppl), 93-114.
  • Moreau, J. J. (1995). Numerical experiments in granular dynamics: Vibration-induced size segregation. In Contact Mechanics (pp. 347-358). Boston, MA: Springer US.
  • Jean, M. (1995). Mechanics of geometrical interfaces.
  • Rapaport, D. C. (1980). The event scheduling problem in molecular dynamic simulation. Journal of Computational Physics, 34(2), 184-201.
  • Walton, O. R., & Braun, R. L. (1986). Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of rheology, 30(5), 949-980.
  • Wu, K., Sun, W., Liu, S., & Zhang, X. (2021). Study of shear behavior of granular materials by 3D DEM simulation of the triaxial test in the membrane boundary condition. Advanced Powder Technology, 32(4), 1145-1156.
  • Wang, X., & Li, J. (2014). Simulation of triaxial response of granular materials by modified DEM. Science China Physics, Mechanics & Astronomy, 57, 2297-2308.
  • Gong, J., Pang, X., Tang, Y., Liu, M., Jiang, J., & Ou, X. (2024). Effects of particle shape, physical properties and particle size distribution on the small-strain stiffness of granular materials: A DEM study. Computers and Geotechnics, 165, 105903.
  • Nguyen, H. B. K., Rahman, M. M., & Fourie, A. B. (2020). Effect of particle shape on constitutive relation: DEM study. Journal of Geotechnical and Geoenvironmental Engineering, 146(7), 04020058.
  • Ng, T. T. (1994). Numerical simulations of granular soil using elliptical particles. Computers and geotechnics, 16(2), 153-169.
  • Itasca, C. G. I. (2005). PFC3D (Particle Flow Code in Three Dimensions). Minneapolis, Minnesota, USA.
  • Cantürk, U., Koç, İ., Özel, H. B., & Şevik, H. (2024). Possible changes of Pinus nigra distribution regions in Türkiye with the impacts of global climate change. BioResources, 19(3), 6190- 6214.
  • Işınkaralar, K., Işınkaralar, Ö., & Şevik, H. (2022). Usability of some landscape plants in biomonitoring technique: an anaysis with special regard to heavy metals. Kent Akademisi, 15(3), 1413-1421.
  • Şen, G., Güngör, E., & Şevik, H. (2018). Defining the effects of urban expansion on land use/cover change: a case study in Kastamonu, Turkey. Environmental monitoring and assessment, 190(8), 454.
  • Yılmazoğlu, M. U., & İnce, G. Ç. (2022). Investigation of the soil behaviour of Fethiye District, Mesudiye, Muğla, by one-dimensional equivalent linear analysis method. Arabian Journal of Geosciences, 15(9), 813.
  • İnce, G. Ç., & Yılmazoğlu, M. U. (2021). Probabilistic seismic hazard assessment of Muğla, Turkey. Natural Hazards, 107(2), 1311-1340.
  • Memiş, S., Mütevelli, İ. G., & Yılmazoğlu, M. U. (2016). Sinop İlinde Üretilen Hazır Betonların İstatistiksel Olarak Değerlendirilmesi. Engineering Sciences, 11(4), 83-92.
  • Özkan, İ. G. M., Aldemir, K., Alhasan, O., Benli, A., Bayraktar, O. Y., Yılmazoğlu, M. U., & Kaplan, G. (2024). Investigation on the sustainable use of different sizes of sawdust aggregates in eco-friendly foam concretes: Physico-mechanical, thermal insulation and durability characteristics. Construction and Building Materials, 438, 137100.
  • Kaplan, G., Bayraktar, O. Y., Li, Z., Bodur, B., Yılmazoglu, M. U., & Alcan, B. A. (2023). Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: Minimization of cost, CO2 emissions and embodied energy. Journal of Building Engineering, 76, 107280.
  • Memiş, S., Yılmazoğlu, M. U., & Mütevelli, İ. G. (2016). Kastamonu İlinde Kullanılan Betonların Nicel Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2), 756-764.
  • Bayraktar, O. Y., Yılmazoğlu, M., Mütevelli, İ., Çetin, M., Çitoğlu, G. S., Dadula, C. P., & Dadula, D. P. (2022). Usability of organic wastes in concrete production; Palm leaf sample. Kastamonu University Journal of Engineering and Sciences, 8(1), 69-77.
  • Yaprak, H., Memis, S., Kaplan, G., Yilmazoglu, M. U., & Ozkan, I. G. M. (2018). Effects on compressive strenght of accelerated curing methods in alkali activated mortars. Int J Sci Technol Res, 4.
  • Memis, S., Kaplan, G., Yaprak, H., Yilmazoglu, M. U., & Mütevvelli Özkan, I. G. (2018). Some durability properties of alkali activated materials (AAM) produced with ceramic powder and micro calcite. Ceram. Silik, 62, 342-354.
  • Memiş, S., Özkan, İ. M., Yılmazoğlu, M. U., Kaplan, G., & Yaprak, H. (2018). Behavior of mortar samples with waste brick and ceramic under freeze-thaw effect. In Proceedings of 3rd International Sustainable Buildings Symposium (ISBS 2017) Volume 2 3 (pp. 189-202). Springer International Publishing.
  • Yilmazoğlu, M. U. (2024). Effect of Bone Ash and Rice Husk Ash on the Unconfined Compressive Strength of Silt Soil. Kastamonu University Journal of Engineering and Sciences, 10(1), 22-28.

Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method

Year 2024, Volume: 10 Issue: 2, 73 - 80, 25.12.2024
https://doi.org/10.55385/kastamonujes.1559603

Abstract

Predicting the mechanical behavior of the soils on which the structures and facilities are built is crucial in civil engineering. Although solutions are made by modeling the soils as continuous homogeneous environments due to their ease and fast solutions, the soil is the combination of particles in a multiphase environment. Therefore, the Discrete Element Method, which offers a closer approach to the soil properties, was used in the study. This study modeled the behavior of homogeneous granular materials under triaxial compression tests using the Discrete Element Method (DEM). DEM, an ideal numerical technique for simulating particle environments, was used to investigate the mechanical responses of granular assemblies when subjected to varying confining pressures. The research focused on the effects of particle shape, size distribution, and contact mechanics on the material's stress-strain relationship and deformation behavior during the test. Using the DEM approach and PFC3D, the triaxial compression test of uniform sands was modeled to estimate the Poisson's ratio, Young's modulus, and bearing capacity.

Ethical Statement

Ethics committee approval is not required.

Thanks

Not applicable.

References

  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65.
  • Luding, S. (2008). Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. European journal of environmental and civil engineering, 12(7-8), 785-826.
  • Cundall, P. A. (1971). A computer model for simulating progressive, large-scale movement in blocky rock system. In Proceedings of the international symposium on rock mechanics (Vol. 8, pp. 129-136).
  • Cundall, P. A., & Hart, R. D. (1993). Numerical modeling of discontinua. In Analysis and design methods (pp. 231-243). Pergamon.
  • Bourrier, F., Kneib, F., Chareyre, B., & Fourcaud, T. (2013). Discrete modeling of granular soils reinforcement by plant roots. Ecological Engineering, 61, 646-657.
  • Jiang, M. J., Yu, H. S., & Harris, D. (2006). Discrete element modelling of deep penetration in granular soils. International journal for numerical and analytical methods in geomechanics, 30(4), 335-361.
  • Gu, X., Lu, L., & Qian, J. (2017). Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils. Particuology, 32, 21-29.
  • Ma, X., Lei, H., & Kang, X. (2022). Effects of particle morphology on the shear response of granular soils by discrete element method and 3D printing technology. International Journal for Numerical and Analytical Methods in Geomechanics, 46(11), 2191-2208.
  • Zhang, T., Li, S., Yang, H., & Zhang, F. (2024). Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks. Journal of Rock Mechanics and Geotechnical Engineering.
  • Nasirpur, O., Çelik, S., & Karimi, B. (2024). Modeling the Behavior of Granular Soils with Different Shape Characteristics Behind a Retaining Wall with Discrete Element and PIV Method. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(3), 1609-1626.
  • Luding, S. (1998). Collisions & contacts between two particles. In Physics of dry granular media (pp. 285-304). Dordrecht: Springer Netherlands.
  • Raous, M., Jean, M., & Moreau, J. J. (Eds.). (1995). Contact mechanics. New York: plenum Press.
  • Moreau, J. J. (1994). Sorne numerical methods in multibody dynamics: application to granular materials. European Journal of Mechanics-A/Solids, 13(4-suppl), 93-114.
  • Moreau, J. J. (1995). Numerical experiments in granular dynamics: Vibration-induced size segregation. In Contact Mechanics (pp. 347-358). Boston, MA: Springer US.
  • Jean, M. (1995). Mechanics of geometrical interfaces.
  • Rapaport, D. C. (1980). The event scheduling problem in molecular dynamic simulation. Journal of Computational Physics, 34(2), 184-201.
  • Walton, O. R., & Braun, R. L. (1986). Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of rheology, 30(5), 949-980.
  • Wu, K., Sun, W., Liu, S., & Zhang, X. (2021). Study of shear behavior of granular materials by 3D DEM simulation of the triaxial test in the membrane boundary condition. Advanced Powder Technology, 32(4), 1145-1156.
  • Wang, X., & Li, J. (2014). Simulation of triaxial response of granular materials by modified DEM. Science China Physics, Mechanics & Astronomy, 57, 2297-2308.
  • Gong, J., Pang, X., Tang, Y., Liu, M., Jiang, J., & Ou, X. (2024). Effects of particle shape, physical properties and particle size distribution on the small-strain stiffness of granular materials: A DEM study. Computers and Geotechnics, 165, 105903.
  • Nguyen, H. B. K., Rahman, M. M., & Fourie, A. B. (2020). Effect of particle shape on constitutive relation: DEM study. Journal of Geotechnical and Geoenvironmental Engineering, 146(7), 04020058.
  • Ng, T. T. (1994). Numerical simulations of granular soil using elliptical particles. Computers and geotechnics, 16(2), 153-169.
  • Itasca, C. G. I. (2005). PFC3D (Particle Flow Code in Three Dimensions). Minneapolis, Minnesota, USA.
  • Cantürk, U., Koç, İ., Özel, H. B., & Şevik, H. (2024). Possible changes of Pinus nigra distribution regions in Türkiye with the impacts of global climate change. BioResources, 19(3), 6190- 6214.
  • Işınkaralar, K., Işınkaralar, Ö., & Şevik, H. (2022). Usability of some landscape plants in biomonitoring technique: an anaysis with special regard to heavy metals. Kent Akademisi, 15(3), 1413-1421.
  • Şen, G., Güngör, E., & Şevik, H. (2018). Defining the effects of urban expansion on land use/cover change: a case study in Kastamonu, Turkey. Environmental monitoring and assessment, 190(8), 454.
  • Yılmazoğlu, M. U., & İnce, G. Ç. (2022). Investigation of the soil behaviour of Fethiye District, Mesudiye, Muğla, by one-dimensional equivalent linear analysis method. Arabian Journal of Geosciences, 15(9), 813.
  • İnce, G. Ç., & Yılmazoğlu, M. U. (2021). Probabilistic seismic hazard assessment of Muğla, Turkey. Natural Hazards, 107(2), 1311-1340.
  • Memiş, S., Mütevelli, İ. G., & Yılmazoğlu, M. U. (2016). Sinop İlinde Üretilen Hazır Betonların İstatistiksel Olarak Değerlendirilmesi. Engineering Sciences, 11(4), 83-92.
  • Özkan, İ. G. M., Aldemir, K., Alhasan, O., Benli, A., Bayraktar, O. Y., Yılmazoğlu, M. U., & Kaplan, G. (2024). Investigation on the sustainable use of different sizes of sawdust aggregates in eco-friendly foam concretes: Physico-mechanical, thermal insulation and durability characteristics. Construction and Building Materials, 438, 137100.
  • Kaplan, G., Bayraktar, O. Y., Li, Z., Bodur, B., Yılmazoglu, M. U., & Alcan, B. A. (2023). Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: Minimization of cost, CO2 emissions and embodied energy. Journal of Building Engineering, 76, 107280.
  • Memiş, S., Yılmazoğlu, M. U., & Mütevelli, İ. G. (2016). Kastamonu İlinde Kullanılan Betonların Nicel Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2), 756-764.
  • Bayraktar, O. Y., Yılmazoğlu, M., Mütevelli, İ., Çetin, M., Çitoğlu, G. S., Dadula, C. P., & Dadula, D. P. (2022). Usability of organic wastes in concrete production; Palm leaf sample. Kastamonu University Journal of Engineering and Sciences, 8(1), 69-77.
  • Yaprak, H., Memis, S., Kaplan, G., Yilmazoglu, M. U., & Ozkan, I. G. M. (2018). Effects on compressive strenght of accelerated curing methods in alkali activated mortars. Int J Sci Technol Res, 4.
  • Memis, S., Kaplan, G., Yaprak, H., Yilmazoglu, M. U., & Mütevvelli Özkan, I. G. (2018). Some durability properties of alkali activated materials (AAM) produced with ceramic powder and micro calcite. Ceram. Silik, 62, 342-354.
  • Memiş, S., Özkan, İ. M., Yılmazoğlu, M. U., Kaplan, G., & Yaprak, H. (2018). Behavior of mortar samples with waste brick and ceramic under freeze-thaw effect. In Proceedings of 3rd International Sustainable Buildings Symposium (ISBS 2017) Volume 2 3 (pp. 189-202). Springer International Publishing.
  • Yilmazoğlu, M. U. (2024). Effect of Bone Ash and Rice Husk Ash on the Unconfined Compressive Strength of Silt Soil. Kastamonu University Journal of Engineering and Sciences, 10(1), 22-28.
There are 37 citations in total.

Details

Primary Language English
Subjects Granular Mechanics, Numerical Modelization in Civil Engineering, Soil Mechanics in Civil Engineering
Journal Section Research Article
Authors

Mehmet Uğur Yilmazoğlu 0000-0003-3574-1768

Early Pub Date December 23, 2024
Publication Date December 25, 2024
Submission Date October 1, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Yilmazoğlu, M. U. (2024). Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method. Kastamonu University Journal of Engineering and Sciences, 10(2), 73-80. https://doi.org/10.55385/kastamonujes.1559603
AMA Yilmazoğlu MU. Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method. KUJES. December 2024;10(2):73-80. doi:10.55385/kastamonujes.1559603
Chicago Yilmazoğlu, Mehmet Uğur. “Modeling of Triaxial Pressure Tests With Uniform Granular Materials Discrete Particle Method”. Kastamonu University Journal of Engineering and Sciences 10, no. 2 (December 2024): 73-80. https://doi.org/10.55385/kastamonujes.1559603.
EndNote Yilmazoğlu MU (December 1, 2024) Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method. Kastamonu University Journal of Engineering and Sciences 10 2 73–80.
IEEE M. U. Yilmazoğlu, “Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method”, KUJES, vol. 10, no. 2, pp. 73–80, 2024, doi: 10.55385/kastamonujes.1559603.
ISNAD Yilmazoğlu, Mehmet Uğur. “Modeling of Triaxial Pressure Tests With Uniform Granular Materials Discrete Particle Method”. Kastamonu University Journal of Engineering and Sciences 10/2 (December 2024), 73-80. https://doi.org/10.55385/kastamonujes.1559603.
JAMA Yilmazoğlu MU. Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method. KUJES. 2024;10:73–80.
MLA Yilmazoğlu, Mehmet Uğur. “Modeling of Triaxial Pressure Tests With Uniform Granular Materials Discrete Particle Method”. Kastamonu University Journal of Engineering and Sciences, vol. 10, no. 2, 2024, pp. 73-80, doi:10.55385/kastamonujes.1559603.
Vancouver Yilmazoğlu MU. Modeling of Triaxial Pressure Tests with Uniform Granular Materials Discrete Particle Method. KUJES. 2024;10(2):73-80.

18397   |   18396|