Conference Paper
BibTex RIS Cite

Relationships Between Leaf Area Index (LAI) and Some Stand Properties in Turkish Red Pine and Black Pine stands

Year 2015, Volume: 15 Issue: 1, 78 - 85, 18.06.2015
https://doi.org/10.17475/kuofd.23267

Abstract

Leaf are index (LAI) which is commonly used for analyzing of canopy cover and a direct measurement of active leaf area is closely related to forest and site productivity. Various methods have been developed for the estimation of LAI. Recent years, hemispherical photograph that is one of the methods of LAI estimation has been used frequently. This study investigates the relationships between LAI and stand age, mean diameter, density, top height, green tree height, basal area and litter in Turkish red pine and black pine stands in Bozdağ region, Denizli. The measurements were carried out in 39 systematic sampling plots 24 of which in Turkish red pine and 15 in black pine stands. LAI values which calculated via the hemispherical photographs ranged between 0.77 and 2.56 m2 m-2and between 0.78 and 4.66 m2 m-2 in Turkish red pine and black pine stands respectively. Regression analysis results revealed there are positive correlations between LAI value and stand age, mean diameter, top height, green tree height, basal area and litter in Turkish red pine whereas LAI value in black pine stand has negative correlation with stand age and mean diameter. Based on our results, changes of stand type are nearly effect on LAI and the correlations between LAI and some stand properties vary according to the species

References

  • Anonim, 2012a. Türkiye orman varlığı, Orman Genel Müdürlüğü, Orman İdaresi ve Planlama Dairesi Başkanlığı, Ankara, 85/12.
  • Anonim, 2012b. Bozdağ orman işletme şefliği orman amenajman planı (2012-2021), Acıpayam, Denizli.
  • Arias D., Calvo-Alvarado J., Dohrenbusch A. 2007. Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica, Forest Ecology and Management, 247,185-193.
  • Asner GP., Scurlock JH., Hicke JA., 2003. Global synthesis of implications for ecological and remote sensing studies, Global Ecol. Biogeogr., 12,191-205.
  • Battaglia M., Cherry M., Beadle C., Sands P., Hingston A. 1998. Prediction of leaf area index in eucalypt plantations: effects of water stress and temperature, Tree Physiol., (18), 521–528.
  • Bolstad P., James M., Vose V., McNulty G. 2001. Forest productivity, leaf area, and terrain in southern Appalachian deciduous forests, For. Sci., 47 (3), 419–427.
  • Buckley DS., Isebrands JG., Sharik TL. 1999. Practical field methods of estimating canopy cover, PAR and LAI in Michigan oak and Pine stands, Northern Journal of Applied Forestry, 16 (1), 25-32.
  • Cannell MGR.1989. Physiological basis of wood production: a review, Scand. J. For. Resour., 4, 459– 490.
  • Carus S., Çatal Y. 2005. Yaprak yüzeyinin Karaçam ve Toros sediri fidanlarında dip çap ve boy artımı üzerindeki etkileri, S.D.Ü Orman Fakültesi dergisi, Seri A, 2, 52-61.
  • Chen JM, Rich PM, Gower ST, Norman JM, Plummer S, 1997. Leaf area index of boreal forests: theory, techniques, and measurements, J. Geophys. Res. Atmos., 102, 29429–29443.
  • Chen, JM., Black TA. 1992. Defining leaf-area index for Non-Flat Leaves, Plant Cell. Environ., 15, 421-429.
  • Coops NC., Smith ML., Jacopsen KL., Martin M., Ollinger S. 2004. Estimation of plant and leaf area index using three techniques in a mature native eucalpt canopy, Aust. Ecol., 29, 332-341.
  • Dantec V L., Dufrene E., Saugier B., 2000. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands, Forest Ecology and Management, 134, 71-81.
  • Davi H., Baret F., Huc R., Dufrene E. 2008. Effect of thinning on LAI variance in heterogeneous forests, Forest Ecology and Management, 256, 890– 899.
  • DeRose RJ. 1998. Leaf area index-Relative density relationship in even-aged Abies balsamea- Picea rubens stands in Maine, Master of Science Thesis, The University of Maine.
  • Dufrene E., Breda N. 1995. Estimation of deciduous forest leaf area index using direct and indirect methods, Oecologia, 104, 156–162.
  • Gholz HL. 1982. Environmental limits on aboveground net primary production, leaf area and biomass in vegetation zones of the Pacific Northwest, Ecology, 53, 469-481.
  • Gower ST., Vogel JG., Norman CL., Kucharik CJ., Steele SJ., Stow TK. 2012. Carbon distribution and aboveground net primary production in Aspen, Jack pine and Black spruce stands in Saskatchewan and Manitoba, Canada, Journal of Geophysical Research: Atmospheres, 102, 29029-29041.
  • Gower ST., Vogt KA., Grier CC. 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability, Ecol. Monogr., 62, 43-65.
  • Grier C C., Running S W. 1977. Leaf area of mature northwestern coniferous forests: relation to water balance, Ecology, 58, 893-899.
  • HemiView, 1998. User Manual, version 2.1, Delta-T Devices, Cambridge, United Kigdom.
  • Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., Baret F. 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography, Agricultural and Forest Meteorology, 121, 19-35.
  • Jonckheere I., Muys B., Coppin P. 2005. Allometry and evaluation of in situ optical LAI determination in scots pine: a case study in Belgium, Tree Physiology, 25, 723-732.
  • Kalıpsız A., 1988. Orman Hasılat Bilgisi. İÜ. Yayın No: 3516, Orman Fakültesi Yayın No: 397, 349, İstanbul.
  • Kantarcı MD. 2000. Toprak İlmi, İstanbul Üniversitesi, Yayın no: 4261 /462, İstanbul.
  • Kara Ö., Şentürk M., Bolat İ., Çakıroğlu K., 2011. meşcerelerinde yaprak alan indeksi ile toprak özellikleri arasındaki ilişkiler, Journal of the Faculty of Forestry, İstabul Üniv., 61(1), 47-54.
  • Kashian DM., Turner MG., Romme WH. 2005. Variability in leaf area and stem wood increment along a 300-year lodgepole pine chrono sequence, Ecosystems, 5, 48-61.
  • Kozlowski T T., Kramer P J., Pallardy S G. 1991.The Physiological ecology of woody plants. academic Press, New York, 657 pp.
  • Leblanc SG., Chen JM. 2001. A practical scheme for correcting multiple scattering effects on optical LAI measurements, Agric. For . Meteorol., 110, 125- 139.
  • Maguire DA, Brissette JC, Gu L., 1998. Crown architecture and growth efficiency of red spruce in uneven-aged, mixed species stands in Maine, Can. J. For. Res, 28, 1233-1240.
  • Morataya R., Galloway G., Berninger F, Canine M, 1999. Foliage biomass sapwood (area and volume) relationships of Tectona grandis L.F. and Gmelina arborea Roxb.: silvicultural implications, For. Ecol. Manage.,113, 231–239.
  • Odabaşı T., Çalışkan A., Bozkuş HF., 2004. Silvikültür Tekniği, İstanbul Üniversitesi, Yayın no: 4459 /475, İstanbul.
  • Peterson DL., Spanner MA., Running SW., Teuber KB, 1987. Relationship of thematic mapper simülatör data to leaf area index of temperate coniferous forest, Remote Sensing of Environment, 22(3), 323-341.
  • Smolander H., Stenger P., 1995. Response of LAI-2000 estimaties to changes in plant surface area index in a scots pine stands, Tree Physiology, 16 (3), 345-349.
  • Soudani K., Trautmann J., Walter JMN. 2002. Leaf area index canopy stratification in Scots pine (Pinus sylvestris L.) stands,Int. J. Remote sensing, 23(18), 3605-3618.
  • Sullivan NS., Bolstad PV., Vose J., 1996. Ecophysiology of twelve forest tree species in the southern Appalachian Mountains, Tree Physiol, (16), 397–406.
  • Watson DJ. 1947. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years, Annals of Botany, 11, 41-76.

Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler

Year 2015, Volume: 15 Issue: 1, 78 - 85, 18.06.2015
https://doi.org/10.17475/kuofd.23267

Abstract

Meşcere çatısının analizinde sıklıkla kullanılan ve aktif yaprak yüzey alanının doğrudan bir ölçüsü olan yaprak alanı indeksi (YAİ), orman ekosistemi dinamiği ve verimlilikle yakından ilişki içerisindedir. YAİ değerinin kestirilmesinde değişik yöntemler geliştirilmiştir. Son yıllarda bu yöntemlerden biri olan yarı-küresel fotoğraflar sıklıkla kullanılmaktadır. Bu çalışmada Bozdağ (Denizli) yöresindeki kızılçam ve karaçam meşcerelerinde YAİ ile meşcere dinamiğinin belirlenmesinde sıklıkla kullanılan yaş, orta çap, ağaç sayısı, üst boy, göğüs yüzeyi (GY), dallı gövde yüksekliği (DGY) ve ölü örtü (ÖÖ)kalınlığı gibi önemli meşcere parametreleri arasındaki ilişkiler incelenmiştir. Kızılçamda 24 adet (299 ha), karaçamda 15 adet (171 ha) sistematik örnek alanda ölçümler gerçekleştirildi. Dijital yarı-küresel fotoğraflar yardımıyla elde edilen YAİ değeri kızılçamda 0.77-2.56 m2 m-2 (ort. 1.59 m2 m-2), karaçamda 0.78-4.66 m2 m-2 (ort.1.70 m2 m-2) değişen aralıkta bulundu. Regresyon analizine göre, YAİ değeri kızılçamda yaş, orta çap, üst boy, GY, DGY, ÖÖ arasında pozitif yönde, karaçamda ise sadece yaş ve orta çap ile negatif yönde anlamlı ilişkiler gösterdi. Araştırma sonuçları, benzer yetişme ortamında bulunan farklı türlerin meşcere tiplerinin YAİ üzerinde etkili olduğunu ve YAİ ile ölçülen meşcere özellikleri arasındaki ilişkinin türlere göre değişebileceğini göstermektedir.

References

  • Anonim, 2012a. Türkiye orman varlığı, Orman Genel Müdürlüğü, Orman İdaresi ve Planlama Dairesi Başkanlığı, Ankara, 85/12.
  • Anonim, 2012b. Bozdağ orman işletme şefliği orman amenajman planı (2012-2021), Acıpayam, Denizli.
  • Arias D., Calvo-Alvarado J., Dohrenbusch A. 2007. Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica, Forest Ecology and Management, 247,185-193.
  • Asner GP., Scurlock JH., Hicke JA., 2003. Global synthesis of implications for ecological and remote sensing studies, Global Ecol. Biogeogr., 12,191-205.
  • Battaglia M., Cherry M., Beadle C., Sands P., Hingston A. 1998. Prediction of leaf area index in eucalypt plantations: effects of water stress and temperature, Tree Physiol., (18), 521–528.
  • Bolstad P., James M., Vose V., McNulty G. 2001. Forest productivity, leaf area, and terrain in southern Appalachian deciduous forests, For. Sci., 47 (3), 419–427.
  • Buckley DS., Isebrands JG., Sharik TL. 1999. Practical field methods of estimating canopy cover, PAR and LAI in Michigan oak and Pine stands, Northern Journal of Applied Forestry, 16 (1), 25-32.
  • Cannell MGR.1989. Physiological basis of wood production: a review, Scand. J. For. Resour., 4, 459– 490.
  • Carus S., Çatal Y. 2005. Yaprak yüzeyinin Karaçam ve Toros sediri fidanlarında dip çap ve boy artımı üzerindeki etkileri, S.D.Ü Orman Fakültesi dergisi, Seri A, 2, 52-61.
  • Chen JM, Rich PM, Gower ST, Norman JM, Plummer S, 1997. Leaf area index of boreal forests: theory, techniques, and measurements, J. Geophys. Res. Atmos., 102, 29429–29443.
  • Chen, JM., Black TA. 1992. Defining leaf-area index for Non-Flat Leaves, Plant Cell. Environ., 15, 421-429.
  • Coops NC., Smith ML., Jacopsen KL., Martin M., Ollinger S. 2004. Estimation of plant and leaf area index using three techniques in a mature native eucalpt canopy, Aust. Ecol., 29, 332-341.
  • Dantec V L., Dufrene E., Saugier B., 2000. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands, Forest Ecology and Management, 134, 71-81.
  • Davi H., Baret F., Huc R., Dufrene E. 2008. Effect of thinning on LAI variance in heterogeneous forests, Forest Ecology and Management, 256, 890– 899.
  • DeRose RJ. 1998. Leaf area index-Relative density relationship in even-aged Abies balsamea- Picea rubens stands in Maine, Master of Science Thesis, The University of Maine.
  • Dufrene E., Breda N. 1995. Estimation of deciduous forest leaf area index using direct and indirect methods, Oecologia, 104, 156–162.
  • Gholz HL. 1982. Environmental limits on aboveground net primary production, leaf area and biomass in vegetation zones of the Pacific Northwest, Ecology, 53, 469-481.
  • Gower ST., Vogel JG., Norman CL., Kucharik CJ., Steele SJ., Stow TK. 2012. Carbon distribution and aboveground net primary production in Aspen, Jack pine and Black spruce stands in Saskatchewan and Manitoba, Canada, Journal of Geophysical Research: Atmospheres, 102, 29029-29041.
  • Gower ST., Vogt KA., Grier CC. 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability, Ecol. Monogr., 62, 43-65.
  • Grier C C., Running S W. 1977. Leaf area of mature northwestern coniferous forests: relation to water balance, Ecology, 58, 893-899.
  • HemiView, 1998. User Manual, version 2.1, Delta-T Devices, Cambridge, United Kigdom.
  • Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., Baret F. 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography, Agricultural and Forest Meteorology, 121, 19-35.
  • Jonckheere I., Muys B., Coppin P. 2005. Allometry and evaluation of in situ optical LAI determination in scots pine: a case study in Belgium, Tree Physiology, 25, 723-732.
  • Kalıpsız A., 1988. Orman Hasılat Bilgisi. İÜ. Yayın No: 3516, Orman Fakültesi Yayın No: 397, 349, İstanbul.
  • Kantarcı MD. 2000. Toprak İlmi, İstanbul Üniversitesi, Yayın no: 4261 /462, İstanbul.
  • Kara Ö., Şentürk M., Bolat İ., Çakıroğlu K., 2011. meşcerelerinde yaprak alan indeksi ile toprak özellikleri arasındaki ilişkiler, Journal of the Faculty of Forestry, İstabul Üniv., 61(1), 47-54.
  • Kashian DM., Turner MG., Romme WH. 2005. Variability in leaf area and stem wood increment along a 300-year lodgepole pine chrono sequence, Ecosystems, 5, 48-61.
  • Kozlowski T T., Kramer P J., Pallardy S G. 1991.The Physiological ecology of woody plants. academic Press, New York, 657 pp.
  • Leblanc SG., Chen JM. 2001. A practical scheme for correcting multiple scattering effects on optical LAI measurements, Agric. For . Meteorol., 110, 125- 139.
  • Maguire DA, Brissette JC, Gu L., 1998. Crown architecture and growth efficiency of red spruce in uneven-aged, mixed species stands in Maine, Can. J. For. Res, 28, 1233-1240.
  • Morataya R., Galloway G., Berninger F, Canine M, 1999. Foliage biomass sapwood (area and volume) relationships of Tectona grandis L.F. and Gmelina arborea Roxb.: silvicultural implications, For. Ecol. Manage.,113, 231–239.
  • Odabaşı T., Çalışkan A., Bozkuş HF., 2004. Silvikültür Tekniği, İstanbul Üniversitesi, Yayın no: 4459 /475, İstanbul.
  • Peterson DL., Spanner MA., Running SW., Teuber KB, 1987. Relationship of thematic mapper simülatör data to leaf area index of temperate coniferous forest, Remote Sensing of Environment, 22(3), 323-341.
  • Smolander H., Stenger P., 1995. Response of LAI-2000 estimaties to changes in plant surface area index in a scots pine stands, Tree Physiology, 16 (3), 345-349.
  • Soudani K., Trautmann J., Walter JMN. 2002. Leaf area index canopy stratification in Scots pine (Pinus sylvestris L.) stands,Int. J. Remote sensing, 23(18), 3605-3618.
  • Sullivan NS., Bolstad PV., Vose J., 1996. Ecophysiology of twelve forest tree species in the southern Appalachian Mountains, Tree Physiol, (16), 397–406.
  • Watson DJ. 1947. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years, Annals of Botany, 11, 41-76.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ali Kemal Özbayram

Emrah Çiçek This is me

Faruk Yılmaz This is me

Publication Date June 18, 2015
Published in Issue Year 2015 Volume: 15 Issue: 1

Cite

APA Özbayram, A. K., Çiçek, E., & Yılmaz, F. (2015). Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler. Kastamonu University Journal of Forestry Faculty, 15(1), 78-85. https://doi.org/10.17475/kuofd.23267
AMA Özbayram AK, Çiçek E, Yılmaz F. Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler. Kastamonu University Journal of Forestry Faculty. June 2015;15(1):78-85. doi:10.17475/kuofd.23267
Chicago Özbayram, Ali Kemal, Emrah Çiçek, and Faruk Yılmaz. “Kızılçam Ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) Ile Bazı Meşcere Özellikleri Arasındaki İlişkiler”. Kastamonu University Journal of Forestry Faculty 15, no. 1 (June 2015): 78-85. https://doi.org/10.17475/kuofd.23267.
EndNote Özbayram AK, Çiçek E, Yılmaz F (June 1, 2015) Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler. Kastamonu University Journal of Forestry Faculty 15 1 78–85.
IEEE A. K. Özbayram, E. Çiçek, and F. Yılmaz, “Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler”, Kastamonu University Journal of Forestry Faculty, vol. 15, no. 1, pp. 78–85, 2015, doi: 10.17475/kuofd.23267.
ISNAD Özbayram, Ali Kemal et al. “Kızılçam Ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) Ile Bazı Meşcere Özellikleri Arasındaki İlişkiler”. Kastamonu University Journal of Forestry Faculty 15/1 (June 2015), 78-85. https://doi.org/10.17475/kuofd.23267.
JAMA Özbayram AK, Çiçek E, Yılmaz F. Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler. Kastamonu University Journal of Forestry Faculty. 2015;15:78–85.
MLA Özbayram, Ali Kemal et al. “Kızılçam Ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) Ile Bazı Meşcere Özellikleri Arasındaki İlişkiler”. Kastamonu University Journal of Forestry Faculty, vol. 15, no. 1, 2015, pp. 78-85, doi:10.17475/kuofd.23267.
Vancouver Özbayram AK, Çiçek E, Yılmaz F. Kızılçam ve Karaçam Meşcerelerinde Yaprak Alanı İndeksi (YAİ) ile Bazı Meşcere Özellikleri Arasındaki İlişkiler. Kastamonu University Journal of Forestry Faculty. 2015;15(1):78-85.

14178  14179       14165           14166           14167            14168