Research Article
BibTex RIS Cite

Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester

Year 2018, Volume: 18 Issue: 1, 62 - 74, 23.03.2018
https://doi.org/10.17475/kastorman.409185

Abstract

Aim of study: In this study, XRD and Vickers microhardness analyses of wood polymer
nanocomposites (WPNs)
materials are carried out in detail. Especially, we are focused on the mechanical
analysis.



Area of study: Pine wood flour (40 mesh) as lignocellulosic filler obtained from a
commercial WPC manufacturer (sema wood) in Tekirdag, Turkey are used.



Material and Methods: Polypropylene, nano TiO2 and coupling agent
are used in the experiments. Depending on the nanocomposite groups, granulated
polymer, wood flour, nano TiO2 and MAPP are mixed. Then this mixture
is compounded in a laboratory scale twin-screw extruder at 40 rpm screw speed.



Main results: According to the obtained hardness results, all of the materials show RISE
(Reverse Indentation Size Effect) behavior. Experimental microhardness results
are compared with the mathematical models (Meyer's law, Proportional sample
Resistance (PSR), Elastic/Plastic Deformation (EPD) and
Indentation-Induced Cracking (IIC) models) used in the microhardness analysis of materials in the
literature and the most suitable model for microhardness values of materials
was determined.
According to the models, IIC model is the most
suitable to determine the micromechanical properties.



Research highlights: Structural and mechanical properties of WPNs materials are investigated. The increase in
the microhardness values of the all sample depends on the increase of applied
load. In addition, the microhardness values decrease with
increased TiO2 concentration in the samples and m
icrohardness
values reach a saturation region at around for the samples.

References

  • Awad, R., Abou Aly, A. I., Kamal, M., Anas, M. (2011). Mechanical Properties of (Cu0.5Tl0.5)-1223 Substituted by Pr. J. Supercond. Nov. Magn., 24, 1947-1956.
  • Arda, L., Ozturk, O., Asikuzun, E., Ataoglu, S. (2013). Structural and mechanical properties of transition metals doped ZnMgO nanoparticles. Powder Technology, 235, 479-484.
  • Asikuzun, E., Ozturk, O., L., Arda, Akcan, D., Senol, S.D., Terzioglu, C. (2015). Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process. J. Mat. Sci.: in Elect. 26, 8147–8159.
  • Ahmed, M.A., El-Shennawy, M., Althomali, Y.M., Omar, A.A. (2016). Effect of Titanium Dioxide Nano Particles Incorporation on Mechanical and Physical Properties on Two Different Types of Acrylic Resin Denture Base. World Journal of Nano Science and Engineering, 6, 111-119.
  • Bull, S.J., Page,T.F., Yoffe, E.H. (1989). An explanation of the indentation size effect in ceramics. Philosophical Magazine Letters, 59, 281-288.
  • Cetinkara, H.A., Yilmazlar, M., Ozturk, O., Nursoy, M., Terzioglu, C. (2009). The influence of cooling rates on microstructure and mechanical properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors. In Journal of Physics: Conference Series 153, 012038.
  • Candan, Z., Akbulut, T. (2013). Developing environmentally friendly wood composite panels by nanotechnology. BioResources, 8 (3), 3590-3598.
  • Cetin, N., Cetin, N., Harper, D. (2015). Vinyl acetate-modified microcrystalline cellulose-reinforced HDPE composites prepared by twin-screw extrusion. Turkish Journal of Agriculture and Forestry, 39 (1), 39-47.
  • Deka, B.K., Maji, T.K. (2011). Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 42 (12), 2117-2125.
  • Elmustafa, A.A., Stone, D.S. (2003). Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 51(2), 357-381.
  • Farhoodi, M., Dadashi, S., Mousavi, S.M.A., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., Oromiehie, A., Hemmati, F. (2012). Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites. Polymer (Korea), 36 (6),745-755.
  • Gong, J., Wu, J., Guan, Z. (1999). Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. Journal of the European Ceramic Society, 19(15), 2625-2631.
  • Graaf, D.D., Braciszewicz, M., Hintzen, H.T., Sopicka-Lizer, M., De With, G. (2004). The Influence of The Composition on (The Load-Dependence of) The Microhardness of Y–;Si–;Al–;O–;N Glasses As Measured By Vickers Indentation. J. Mater. Sci., 39, 2145.
  • Kölemen, U., Uzun, O., Yılmazlar, M., Güçlü, N., Yanmaz, E. (2006). Hardness and microstructural analysis of Bi1.6Pb0.4Sr2Ca2−xSmxCu3Oy polycrystalline superconductors. Journal of alloys and compounds, 415(1), 300-306.
  • Kaymakci, A., Gulec, T., Hosseinihashemi, S.K., Ayrilmis, N. (2017). Physical, Mechanical and Thermal Properties of Wood/ Zeolıte/Plastic Hybrid Composites, Maderas. Ciencia y tecnología, 19 (3), 339–348.
  • Li, H., Bradt, R.C. (1996). The effect of indentation-induced cracking on the apparent microhardness. J. Mater. Sci., 31, 1065–1070.
  • Lopesa, E.S.N., Cremascoa, A., Afonsob, C.R.M., Caram, R. (2011). Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Materials Characterization, 62, 673-680.
  • Ozturk, O., Cetinkara, H.A., Asikuzun, E., Akdogan, M., Yilmazlar, M., Terzioglu, C. (2011). Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors. Journal of Materials Science: Materials in Electronics, 22(9), 1501-1508.
  • Ozmen, N., Cetin, N.S., Mengeloglu, F., Birinci, E., Karakus K.K. (2013). Effect of Wood Acetylation with Vinyl Acetate and Acetic Anhydride on the Properties of Wood-Plastic Composites. Bioresources, 8 (1), 753-767.
  • Ozturk, O., Asikuzun, E., and Yildirim, G. (2013). The role of Lu doping on microstructural and superconducting properties of Bi2Sr2CaLuxCu2Oy superconducting system. J. Mat. Sci.: in Elect., 24, 1274-1281.
  • Okoh, E.T. (2014). Water Absorption Properties of Some Tropical Timber Species. Journal of Energy and Natural Resources, 3 (2), 20-24.
  • Piccardo, C., Magliocco, A. (2013). The Environmental Profile of Wood in the Building Industry Today: Comments on the Results of Some LCA Studies. American Journal of Civil Engineering and Architecture, 1(6), 122-128.
  • Quinn, J.B., Quinn D.G. (1997). Indentation brittleness of ceramics: a fresh approach. Journal of Materials Science, 32(16), 4331-4346.
  • Sangwal, K., Surowska, B., Blaziak, P. (2002). Analysis Of The Indentatıon Size Effect In The Microhardness Measurement of Some Cobalt-Based Alloys. Mater. Chem. Phys., 77, 511.
  • Sahin, O., Uzun, O., Kölemen, U., Uçar, N. (2007). Dynamic Hardness And Reduced Modulus Determination On The (001) Face Of Β-Sn Single Crystals By A Depth Sensing Indentation Technique. J. Phys. Condens. Matter., 19, 306001.
  • Sahin, O., Uzun, O., Sopicka-Lizer, M., Gocmez, H., Kölemen, U. (2008). Dynamic hardness and elastic modulus calculation of porous SiAlON ceramics using depth-sensing indentation technique. Journal of the European Ceramic Society, 28(6), 1235-1242.
  • Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D., Cakiroglu, O. (2014). Structural and mechanical properties of ZnMgO nanoparticles. Materials Science and Engineering: A, 590, 416-422.
  • Upit, G.P., Varchenya, S.A. (1966). Microhardness of alkali halide crystals. Physica Status Solidi (b), 17(2), 831–835.

Ahşap polimer nanokompozit (WPN) numunelerinin mekanik davranışlarının statik vickers mikro sertlik test cihazı kullanılarak incelenmesi

Year 2018, Volume: 18 Issue: 1, 62 - 74, 23.03.2018
https://doi.org/10.17475/kastorman.409185

Abstract

Çalışmanın amacı: Bu çalışmada, ahşap
polimer nanokompozit (WPN) malzemelerinin XRD ve Vickers mikrosertlik
analizleri detaylı bir şekilde gerçekleştirilmiştir. Özellikle mekanik
analizler üzerine odaklanılmıştır.



Çalışma alanı: Tekirdağ'da ticari
bir WPC üreticisinden (Sema Ahşap) elde edilen lignoselülozik dolgu maddesi
olarak çam kerestesi kullanılmıştır.



Materyal ve Yöntem:
Deneylerde
polipropilen, nano TiO2 ve birleştirme maddesi kullanılmıştır.
Nanokompozit
gruplara bağlı olarak, granül haline getirilmiş polimer, odun unu, nano TiO2 ve
MAPP karıştırılmıştır.
Daha sonra bu
karışım, 40 rpm'lik vida hızında laboratuar ölçekli çift vidalı bir ekstrüderde
birleştirilmiştir.



Temel Sonuçlar: Elde edilen
sertlik sonuçlarına göre, tüm materyaller RISE (Ters Çentik Boyutu Etkisi) davranışını
göstermektedir. Deneysel sonuçlar, literatürde malzemelerin mikrosertlik
analizlerinde kullanılan matematiksel modeller (Meyer Kanunu, Orantılı Numune
Direnci (PSR), Elastik/Plastik Deformasyon (EPD) ve Çentici Kaynaklı Yarılma
(IIC) modelleri ile karşılaştırılmış ve en uygun model belirlenmiştir. Bu
modellere göre, IIC modeli, malzemelerin mikromekanik özelliklerini belirlemek
için en uygun modeldir.



Araştırma
vurguları:
WPN'lerin
yapısal ve mekanik özellikleri araştırılmıştır.
Tüm
numunenin mikrosertlik değerlerindeki artış uygulanan yükün artmasına bağlıdır.
Ek olarak, numunelerde TiO2 konsantrasyonun artması ile mikrosertlik
değerleri azalmakta ve yaklaşık 1.5 N'de doyma bölgesine ulaşmaktadır.

References

  • Awad, R., Abou Aly, A. I., Kamal, M., Anas, M. (2011). Mechanical Properties of (Cu0.5Tl0.5)-1223 Substituted by Pr. J. Supercond. Nov. Magn., 24, 1947-1956.
  • Arda, L., Ozturk, O., Asikuzun, E., Ataoglu, S. (2013). Structural and mechanical properties of transition metals doped ZnMgO nanoparticles. Powder Technology, 235, 479-484.
  • Asikuzun, E., Ozturk, O., L., Arda, Akcan, D., Senol, S.D., Terzioglu, C. (2015). Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process. J. Mat. Sci.: in Elect. 26, 8147–8159.
  • Ahmed, M.A., El-Shennawy, M., Althomali, Y.M., Omar, A.A. (2016). Effect of Titanium Dioxide Nano Particles Incorporation on Mechanical and Physical Properties on Two Different Types of Acrylic Resin Denture Base. World Journal of Nano Science and Engineering, 6, 111-119.
  • Bull, S.J., Page,T.F., Yoffe, E.H. (1989). An explanation of the indentation size effect in ceramics. Philosophical Magazine Letters, 59, 281-288.
  • Cetinkara, H.A., Yilmazlar, M., Ozturk, O., Nursoy, M., Terzioglu, C. (2009). The influence of cooling rates on microstructure and mechanical properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors. In Journal of Physics: Conference Series 153, 012038.
  • Candan, Z., Akbulut, T. (2013). Developing environmentally friendly wood composite panels by nanotechnology. BioResources, 8 (3), 3590-3598.
  • Cetin, N., Cetin, N., Harper, D. (2015). Vinyl acetate-modified microcrystalline cellulose-reinforced HDPE composites prepared by twin-screw extrusion. Turkish Journal of Agriculture and Forestry, 39 (1), 39-47.
  • Deka, B.K., Maji, T.K. (2011). Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 42 (12), 2117-2125.
  • Elmustafa, A.A., Stone, D.S. (2003). Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 51(2), 357-381.
  • Farhoodi, M., Dadashi, S., Mousavi, S.M.A., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., Oromiehie, A., Hemmati, F. (2012). Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites. Polymer (Korea), 36 (6),745-755.
  • Gong, J., Wu, J., Guan, Z. (1999). Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. Journal of the European Ceramic Society, 19(15), 2625-2631.
  • Graaf, D.D., Braciszewicz, M., Hintzen, H.T., Sopicka-Lizer, M., De With, G. (2004). The Influence of The Composition on (The Load-Dependence of) The Microhardness of Y–;Si–;Al–;O–;N Glasses As Measured By Vickers Indentation. J. Mater. Sci., 39, 2145.
  • Kölemen, U., Uzun, O., Yılmazlar, M., Güçlü, N., Yanmaz, E. (2006). Hardness and microstructural analysis of Bi1.6Pb0.4Sr2Ca2−xSmxCu3Oy polycrystalline superconductors. Journal of alloys and compounds, 415(1), 300-306.
  • Kaymakci, A., Gulec, T., Hosseinihashemi, S.K., Ayrilmis, N. (2017). Physical, Mechanical and Thermal Properties of Wood/ Zeolıte/Plastic Hybrid Composites, Maderas. Ciencia y tecnología, 19 (3), 339–348.
  • Li, H., Bradt, R.C. (1996). The effect of indentation-induced cracking on the apparent microhardness. J. Mater. Sci., 31, 1065–1070.
  • Lopesa, E.S.N., Cremascoa, A., Afonsob, C.R.M., Caram, R. (2011). Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Materials Characterization, 62, 673-680.
  • Ozturk, O., Cetinkara, H.A., Asikuzun, E., Akdogan, M., Yilmazlar, M., Terzioglu, C. (2011). Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors. Journal of Materials Science: Materials in Electronics, 22(9), 1501-1508.
  • Ozmen, N., Cetin, N.S., Mengeloglu, F., Birinci, E., Karakus K.K. (2013). Effect of Wood Acetylation with Vinyl Acetate and Acetic Anhydride on the Properties of Wood-Plastic Composites. Bioresources, 8 (1), 753-767.
  • Ozturk, O., Asikuzun, E., and Yildirim, G. (2013). The role of Lu doping on microstructural and superconducting properties of Bi2Sr2CaLuxCu2Oy superconducting system. J. Mat. Sci.: in Elect., 24, 1274-1281.
  • Okoh, E.T. (2014). Water Absorption Properties of Some Tropical Timber Species. Journal of Energy and Natural Resources, 3 (2), 20-24.
  • Piccardo, C., Magliocco, A. (2013). The Environmental Profile of Wood in the Building Industry Today: Comments on the Results of Some LCA Studies. American Journal of Civil Engineering and Architecture, 1(6), 122-128.
  • Quinn, J.B., Quinn D.G. (1997). Indentation brittleness of ceramics: a fresh approach. Journal of Materials Science, 32(16), 4331-4346.
  • Sangwal, K., Surowska, B., Blaziak, P. (2002). Analysis Of The Indentatıon Size Effect In The Microhardness Measurement of Some Cobalt-Based Alloys. Mater. Chem. Phys., 77, 511.
  • Sahin, O., Uzun, O., Kölemen, U., Uçar, N. (2007). Dynamic Hardness And Reduced Modulus Determination On The (001) Face Of Β-Sn Single Crystals By A Depth Sensing Indentation Technique. J. Phys. Condens. Matter., 19, 306001.
  • Sahin, O., Uzun, O., Sopicka-Lizer, M., Gocmez, H., Kölemen, U. (2008). Dynamic hardness and elastic modulus calculation of porous SiAlON ceramics using depth-sensing indentation technique. Journal of the European Ceramic Society, 28(6), 1235-1242.
  • Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D., Cakiroglu, O. (2014). Structural and mechanical properties of ZnMgO nanoparticles. Materials Science and Engineering: A, 590, 416-422.
  • Upit, G.P., Varchenya, S.A. (1966). Microhardness of alkali halide crystals. Physica Status Solidi (b), 17(2), 831–835.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Elif Aşıkuzun

Alperen Kaymakcı

Publication Date March 23, 2018
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Aşıkuzun, E., & Kaymakcı, A. (2018). Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester. Kastamonu University Journal of Forestry Faculty, 18(1), 62-74. https://doi.org/10.17475/kastorman.409185
AMA Aşıkuzun E, Kaymakcı A. Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester. Kastamonu University Journal of Forestry Faculty. March 2018;18(1):62-74. doi:10.17475/kastorman.409185
Chicago Aşıkuzun, Elif, and Alperen Kaymakcı. “Investigation of Mechanical Behavior of Wood Polymer Nanocomposites (WPNs) Samples Using Static Vickers Microhardness Tester”. Kastamonu University Journal of Forestry Faculty 18, no. 1 (March 2018): 62-74. https://doi.org/10.17475/kastorman.409185.
EndNote Aşıkuzun E, Kaymakcı A (March 1, 2018) Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester. Kastamonu University Journal of Forestry Faculty 18 1 62–74.
IEEE E. Aşıkuzun and A. Kaymakcı, “Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester”, Kastamonu University Journal of Forestry Faculty, vol. 18, no. 1, pp. 62–74, 2018, doi: 10.17475/kastorman.409185.
ISNAD Aşıkuzun, Elif - Kaymakcı, Alperen. “Investigation of Mechanical Behavior of Wood Polymer Nanocomposites (WPNs) Samples Using Static Vickers Microhardness Tester”. Kastamonu University Journal of Forestry Faculty 18/1 (March 2018), 62-74. https://doi.org/10.17475/kastorman.409185.
JAMA Aşıkuzun E, Kaymakcı A. Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester. Kastamonu University Journal of Forestry Faculty. 2018;18:62–74.
MLA Aşıkuzun, Elif and Alperen Kaymakcı. “Investigation of Mechanical Behavior of Wood Polymer Nanocomposites (WPNs) Samples Using Static Vickers Microhardness Tester”. Kastamonu University Journal of Forestry Faculty, vol. 18, no. 1, 2018, pp. 62-74, doi:10.17475/kastorman.409185.
Vancouver Aşıkuzun E, Kaymakcı A. Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester. Kastamonu University Journal of Forestry Faculty. 2018;18(1):62-74.

14178  14179       14165           14166           14167            14168