Boş Kereste Kurutma Fırının Hesaplamalı Akışkanlar Dinamiği ve Isıl Analizi
Year 2023,
Volume: 23 Issue: 1, 64 - 74, 24.03.2023
Yasin Furkan Görgülü
,
Murat Aydın
Abstract
Çalışmanın amacı: Ahşap ürünlerin boyutları bağıl nemdeki değişikliklerle değiştiğinden, fırınlarda kurutma, ahşap ürünlerin optimum kullanımı için en önemli prosedürlerden biri haline gelmektedir. Yüksüz bir kereste kurutma fırınının hesaplamalı akışkanlar dinamiği analizi ve kurutulacak kerestenin konumlandırılması amaçlanmıştır.
Materyal ve yöntem: Kereste kurutma fırınının ısı ve akış analizi ANSYS yazılımı kullanılarak yapılmıştır. Zemin ve duvar malzemesi olarak sırasıyla beton ve alüminyum seçilmiştir. Duvar kalınlığı 1 metre olarak alınmıştır. Çalışmada yerçekimi kuvvetleri de dikkate alınmış, oluşturulan ağın eleman sayısı 87057 ve düğüm sayısı 17730'dur.
Temel sonuçlar: Çalışmada oluşturulan akış özellikleri ve sıcaklık analizleri, yapılması planlanan kereste kurutma fırınlarına ışık tutmuştur. Kurutulacak kerestelerin akış yolları ve sıcaklık dağılımlarına göre konumlandırılması hakkında ön bilgiler verilmektedir.
Araştırma vurguları: Yükleme yapılmamış kereste kurutma fırınının akış analizleri yapılmış ve akım çizgileri gösterilmiştir. Kurutma fırınının beton zemini ve alüminyum panellerden oluşan duvarları ile birlikte fanlardan yönlendirilen sıcak havanın termal analizi yapılmıştır.
References
- Ansys Inc. (2011). Introduction to Ansys Meshing (pp. L5-16). Ansys Inc.
- Ansys Inc. (2015). Mesh Quality And Advanced Topics Ansys Workbench 16.0. In Ansys.
- Ansys Inc. (2022). Ansys Fluent 12.0 User’s Guide.
- Aydin, I. & Colakoglu, G. (2008). Variations in Bending Strength and Modulus of Elasticity of Spruce and Alder Plywood after Steaming and High Temperature Drying. Mechanics of Advanced Materials and Structures, 15(5), 371-374. https://doi.org/10.1080/15376490801977692
- Bardina, J.E., Huang, P.G. & Coakley, T.J. (1997). Turbulence Modeling Validation. In 28th Fluid Dynamics Conference (Issue April). https://doi.org/10.2514/6.1997-2121
- Bernard, P.S. & Wallace, J.M. (2002). Turbulent Flow: Analysis, Measurement and Prediction. John Wiley & Sons, Inc.
- Bian, Z. (2001). Airflow and Wood Drying Models for Woodkilns. In University of Science & Technology.
- Budakçi, M., Aydın, M., Aşkun, T. & Güner, P. (2018). Antimicrobial Properties of Wood Water Obtained by a High-Frequency Vacuum Drying Method. The Online Journal of Science and Technology, 8(3), 21-25.
- Ciritcioğlu, H.H., Tarmian, A., Görgün, H.V. & Ünsal, Ö. (2022). Using Acoustic Emission Technique for Detecting Checks on İndustrial-Size Beech Wood Disks During Drying. Drying Technology, 40(16), 3614-3621.
https://doi.org/10.1080/07373937.2022.2073366
- Dulǎu, M. & Madaras, I. (2019). Development of a Monitoring and Control System for Timber’s Drying Process. Procedia Manufacturing, 32, 545-552. https://doi.org/10.1016/j.promfg.2019.02.251
- Elustondo, D.M. & Oliveira, L. (2009). Model to Assess Energy Consumption in İndustrial Lumber Kilns. Maderas: Ciencia y Tecnologia, 11(1), 33-46.
- Erriguible, A., Bernada, P., Couture, F. & Roques, M. A. (2005). Modeling of Heat and Mass Transfer at the Boundary Between a Porous Medium and its Surroundings. Drying Technology, 23(3), 455-472. https://doi.org/10.1081/DRT-200054119
- Erriguible, A., Bernada, P., Couture, F. & Roques, M. (2006). Simulation of Superheated Steam Drying from Coupling Models. Drying Technology, 24(8), 941-951.
https://doi.org/10.1080/07373930600776019
- Fletcher, C.A.J. (1998). Computational Techniques for Fluid Dynamics 1. In Computational Techniques for Fluid Dynamics 1. https://doi.org/10.1007/978-3-642-58229-5
- Ghiaus, A.G., Filios, A.E., Margaris, D.P. & Tzempelikos, D.Α. (2010). Industrial Drying of Wooden Pallets-CFD Analysis of Air Flow. 17th International Drying Symposium, 3-6 October, Germany.
- Görgülü, Y.F., Özgür, M.A. & Köse, R. (2021). CFD Analysis of a NACA 0009 Aerofoil at a Low Reynolds Number. Politeknik Dergisi, 24(3), 1237-1242.
https://doi.org/10.2339/politeknik.877391
- Görgün, H.V. & Ünsal, Ö. (2020). Continuous Lumber Drying Kilns. Bartin Orman Fakültesi Dergisi, 22(1), 283-293.
- Guler, C. & Dilek, B. (2020). Investigation of High-Frequency Vacuum Drying on Physical and Mechanical Properties of Common Oak (Quercus robur) and Common Walnut (Juglans regia) Lumber. BioResources, 15(4), 7861-7871.https://doi.org/10.15376/biores.15.4.7861-7871
- Hızıroğlu, S. (2017). Fundamental Aspects of Kiln Drying Lumber. Oklahoma Cooperative Extension Service.
- Hughes, B.R., & Oates, M. (2011). Performance Investigation of a Passive Solar-Assisted Kiln in the United Kingdom. Solar Energy, 85(7), 1488-1498. https://doi.org/10.1016/j.solener.2011.04.003
- Hui-hui, S., Ping, Y., Le-yang, F. & Xin-yue, Z. (2015). Numerical Simulation of Hot Air Drying Kiln Velocity Field Based on Computational Fluid Dynamics. International Journal of Research in Engineering and Science (IJRES), 3(5), 9-13.
- Jamaleddine, T.J., & Ray, M.B. (2010). Application of Computational Fluid Dynamics for Simulation of Drying Processes: A Review. Drying Technology, 28(2), 120-154. https://doi.org/10.1080/07373930903517458
- Janjai, S., Intawee, P. & Kaewkiew, J. (2010). A Solar Timber Drying System: Experimental Performance and System Modeling. International Energy Journal, 11(3), 131–144.
- Jones, W.P. & Launder, B.E. (1972). The Prediction of Laminarization with a Two-equation Model of Turbulence. Int. J. Heat Mass Transfer, 15(2), 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
- Korkmaz, H., Ünsal, Ö., Görgün, H.V. & Avcı, E. (2020). Kereste Kurutmada Enerji Verimliliği-Güneş Enerjisi İle Kızılçam (Pinus brutia) Kerestesi Kurutma Örneği. Politeknik Dergisi, 23(3), 671-676.
https://doi.org/10.2339/politeknik.528103
- Korkut, S., As, N. & Büyüksari, Ü. (2018). Comparison of Two Kiln-Drying Schedules for Turkish Hazel (corylus colurna) Lumber of 5-Cm Thickness. Maderas: Ciencia y Tecnologia, 20(1), 129-138. https://doi.org/10.4067/S0718-221X2018005011101
- Kuriakose, R. & Anandharamakrishnan, C. (2010). Computational Fluid Dynamics (CFD) Applications in Spray Drying of Food Products. Trends in Food Science and Technology, 21(8), 383-398. https://doi.org/10.1016/j.tifs.2010.04.009
- Launder, B. E., & Sharma, B. I. (1974). Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc. Letters in heat and mass transfer, 1(2), 131-137.
https://doi.org/10.1016/0094-4548(74)90150-7
- Lee, C.J., Hwang, J.W. & Oh, S.W. (2022). Effect of Combined Radio-Frequency/Vacuum-Press Drying on the Strength Properties of Japanese larch Board. Drying Technology, 40(14), 2849-2856.
https://doi.org/10.1080/07373937.2021.1967972
- Marshall, E.M. & Bakker, A. (2009). Computational Fluid Mixing. In Food Mixing: Principles and Applications. Fluent Inc. 257-345. https://doi.org/10.1002/0471451452.ch5
- Norton, T. & Sun, D.W. (2006). Computational Fluid Dynamics (CFD) - an Effective and Efficient Design and Analysis Tool for the Food Industry: A Review. Trends in Food Science and Technology, 17(11), 600-620. https://doi.org/10.1016/j.tifs.2006.05.004
- Norton, T., Sun, D.W., Grant, J., Fallon, R. & Dodd, V. (2007). Applications of Computational Fluid Dynamics (CFD) in the Modelling and Design of Ventilation Systems in the Agricultural Industry: A Review. Bioresource Technology, 98(12), 2386-2414. https://doi.org/10.1016/j.biortech.2006.11.025
- Özşahin, Ş., Demir, A. & Aydın, İ. (2019). Optimization of Veneer Drying Temperature for the Best Mechanical Properties of Plywood via Artificial Neural Network. Journal of Anatolian Environmental and Animal Sciences, 4(4), 589-597. https://doi.org/10.35229/jaes.635302
- Rumsey, C. (2021). Turbulence Modeling Resource The Wilcox k-omega Turbulence Model. Langley Research Center Turbulence Modeling Resource. https://turbmodels.larc.nasa.gov/wilcox.html
- Smit, G.J.F., du Plessis, J.P., & du Plessis, J.P. (2007). Modelling of Airflow Through a Stack in a Timber-Drying Kiln. Applied Mathematical Modelling, 31(2), 270-282. https://doi.org/10.1016/j.apm.2005.11.003
- Sun, D.W. (2007). Computational Fluid Dynamics in Food Processing. In Computational Fluid Dynamics in Food Processing (Second). Taylor & Francis.https://doi.org/10.1201/b16696-16
- Tarmian, A., Ciritcioğlu, H.H., Ünsal, Ö., Ahmadi, P., Gholampour, B., et al. (2022). Efficiency of Radiofrequency-Vacuum (RF/V) Technology for Mixed-Species Drying of Wood Disks with Inherent Defects. Drying Technology, 40(5), 1002-1012. https://doi.org/10.1080/07373937.2020.1833214
- Tuscarora Wood Midwest. (2021). Why Kiln Dry Wood? |Tuscarora Wood Midwest. https://www.tuscarorawoodmidwest.com/tuscarora-news/why-kiln-dry-wood/
- Üçüncü, K., Aydın, A. & Tiryaki, S. (2017). Experimental Investigation of Wood Moisture Change in Heated Indoor Climate Conditions. İleri Teknoloji Bilimleri Dergisi, 6(3),632-645.
- Ünsal, Ö., Dündar, T., Görgün, H.V., Kaymakci, A., Korkut, S., et al. (2020). Optimizing Lumber Drying Schedules for Oriental Beech and Sessile Oak Using Acoustic Emission. BioResources, 15(3), 6012-6022.
https://doi.org/10.15376/biores.15.3.6012-6022.
- Vaz Jr, M., Zdanski, P.S.B., Cerqueira, R.F. & Possamai, D.G. (2013). Conjugated Heat and Mass Transfer in Convective Drying in Compact Wood Kilns: A System Approach. Advances in Mechanical Engineering, 5, 538931.https://doi.org/10.1155/2013/538931
- Versteeg, H.K. & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. In Actas Urologicas Espanolas (Second Edi, Issue 5). Pearson.
- Ward, J.C. (1991). Drying Defects. In W.T. Simpson (Ed.), Dry kiln operator’s manual (179-205). USDA Forest Product Laboratory. https://doi.org/10.1016/b978-0-08-010635-9.50011-2
- Wilcox, D.C. (2006). Turbulence Modeling for CFD. DCW Industries.
- Xia, B. & Sun, D.W. (2002). Applications of Computational Fluid Dynamics (CFD) in the Food İndustry: A Review. Computers and Electronics in Agriculture, 34(1-3), 5-24. https://doi.org/10.1016/S0168-1699(01)00177-6
Computational Fluid Dynamics and Thermal Analysis of an Unloaded Lumber-drying Kiln
Year 2023,
Volume: 23 Issue: 1, 64 - 74, 24.03.2023
Yasin Furkan Görgülü
,
Murat Aydın
Abstract
Aim of study: Drying in kilns becomes one of the most significant procedures for the optimal use of wood products since the dimensions alter with changes in relative humidity. Computational fluid dynamics analysis of an unloaded lumber-drying kiln and positioning of the timber to be dried were aimed.
Material and methods: The heat and flow analysis of the lumber-drying kiln was analyzed using ANSYS software. Concrete and aluminum were chosen as the floor and wall materials, respectively. The wall thickness was taken as 1 meter. Gravity forces were also taken into account in the study, the number of elements of the created mesh is 87057 and the number of nodes is 17730.
Main results: The flow characteristics and temperature analyses formed in the study shed light on the lumber-drying kilns planned to be built. Preliminary information is provided about the positioning of the lumbers to be dried according to flow paths and temperature distributions.
Highlights: Flow analyzes of the unloaded lumber-drying kiln were undertaken and streamlines were shown. The thermal analysis of the hot air directed from the fans together with the concrete floor of the drying kiln and the walls made of aluminum panels was made.
References
- Ansys Inc. (2011). Introduction to Ansys Meshing (pp. L5-16). Ansys Inc.
- Ansys Inc. (2015). Mesh Quality And Advanced Topics Ansys Workbench 16.0. In Ansys.
- Ansys Inc. (2022). Ansys Fluent 12.0 User’s Guide.
- Aydin, I. & Colakoglu, G. (2008). Variations in Bending Strength and Modulus of Elasticity of Spruce and Alder Plywood after Steaming and High Temperature Drying. Mechanics of Advanced Materials and Structures, 15(5), 371-374. https://doi.org/10.1080/15376490801977692
- Bardina, J.E., Huang, P.G. & Coakley, T.J. (1997). Turbulence Modeling Validation. In 28th Fluid Dynamics Conference (Issue April). https://doi.org/10.2514/6.1997-2121
- Bernard, P.S. & Wallace, J.M. (2002). Turbulent Flow: Analysis, Measurement and Prediction. John Wiley & Sons, Inc.
- Bian, Z. (2001). Airflow and Wood Drying Models for Woodkilns. In University of Science & Technology.
- Budakçi, M., Aydın, M., Aşkun, T. & Güner, P. (2018). Antimicrobial Properties of Wood Water Obtained by a High-Frequency Vacuum Drying Method. The Online Journal of Science and Technology, 8(3), 21-25.
- Ciritcioğlu, H.H., Tarmian, A., Görgün, H.V. & Ünsal, Ö. (2022). Using Acoustic Emission Technique for Detecting Checks on İndustrial-Size Beech Wood Disks During Drying. Drying Technology, 40(16), 3614-3621.
https://doi.org/10.1080/07373937.2022.2073366
- Dulǎu, M. & Madaras, I. (2019). Development of a Monitoring and Control System for Timber’s Drying Process. Procedia Manufacturing, 32, 545-552. https://doi.org/10.1016/j.promfg.2019.02.251
- Elustondo, D.M. & Oliveira, L. (2009). Model to Assess Energy Consumption in İndustrial Lumber Kilns. Maderas: Ciencia y Tecnologia, 11(1), 33-46.
- Erriguible, A., Bernada, P., Couture, F. & Roques, M. A. (2005). Modeling of Heat and Mass Transfer at the Boundary Between a Porous Medium and its Surroundings. Drying Technology, 23(3), 455-472. https://doi.org/10.1081/DRT-200054119
- Erriguible, A., Bernada, P., Couture, F. & Roques, M. (2006). Simulation of Superheated Steam Drying from Coupling Models. Drying Technology, 24(8), 941-951.
https://doi.org/10.1080/07373930600776019
- Fletcher, C.A.J. (1998). Computational Techniques for Fluid Dynamics 1. In Computational Techniques for Fluid Dynamics 1. https://doi.org/10.1007/978-3-642-58229-5
- Ghiaus, A.G., Filios, A.E., Margaris, D.P. & Tzempelikos, D.Α. (2010). Industrial Drying of Wooden Pallets-CFD Analysis of Air Flow. 17th International Drying Symposium, 3-6 October, Germany.
- Görgülü, Y.F., Özgür, M.A. & Köse, R. (2021). CFD Analysis of a NACA 0009 Aerofoil at a Low Reynolds Number. Politeknik Dergisi, 24(3), 1237-1242.
https://doi.org/10.2339/politeknik.877391
- Görgün, H.V. & Ünsal, Ö. (2020). Continuous Lumber Drying Kilns. Bartin Orman Fakültesi Dergisi, 22(1), 283-293.
- Guler, C. & Dilek, B. (2020). Investigation of High-Frequency Vacuum Drying on Physical and Mechanical Properties of Common Oak (Quercus robur) and Common Walnut (Juglans regia) Lumber. BioResources, 15(4), 7861-7871.https://doi.org/10.15376/biores.15.4.7861-7871
- Hızıroğlu, S. (2017). Fundamental Aspects of Kiln Drying Lumber. Oklahoma Cooperative Extension Service.
- Hughes, B.R., & Oates, M. (2011). Performance Investigation of a Passive Solar-Assisted Kiln in the United Kingdom. Solar Energy, 85(7), 1488-1498. https://doi.org/10.1016/j.solener.2011.04.003
- Hui-hui, S., Ping, Y., Le-yang, F. & Xin-yue, Z. (2015). Numerical Simulation of Hot Air Drying Kiln Velocity Field Based on Computational Fluid Dynamics. International Journal of Research in Engineering and Science (IJRES), 3(5), 9-13.
- Jamaleddine, T.J., & Ray, M.B. (2010). Application of Computational Fluid Dynamics for Simulation of Drying Processes: A Review. Drying Technology, 28(2), 120-154. https://doi.org/10.1080/07373930903517458
- Janjai, S., Intawee, P. & Kaewkiew, J. (2010). A Solar Timber Drying System: Experimental Performance and System Modeling. International Energy Journal, 11(3), 131–144.
- Jones, W.P. & Launder, B.E. (1972). The Prediction of Laminarization with a Two-equation Model of Turbulence. Int. J. Heat Mass Transfer, 15(2), 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
- Korkmaz, H., Ünsal, Ö., Görgün, H.V. & Avcı, E. (2020). Kereste Kurutmada Enerji Verimliliği-Güneş Enerjisi İle Kızılçam (Pinus brutia) Kerestesi Kurutma Örneği. Politeknik Dergisi, 23(3), 671-676.
https://doi.org/10.2339/politeknik.528103
- Korkut, S., As, N. & Büyüksari, Ü. (2018). Comparison of Two Kiln-Drying Schedules for Turkish Hazel (corylus colurna) Lumber of 5-Cm Thickness. Maderas: Ciencia y Tecnologia, 20(1), 129-138. https://doi.org/10.4067/S0718-221X2018005011101
- Kuriakose, R. & Anandharamakrishnan, C. (2010). Computational Fluid Dynamics (CFD) Applications in Spray Drying of Food Products. Trends in Food Science and Technology, 21(8), 383-398. https://doi.org/10.1016/j.tifs.2010.04.009
- Launder, B. E., & Sharma, B. I. (1974). Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc. Letters in heat and mass transfer, 1(2), 131-137.
https://doi.org/10.1016/0094-4548(74)90150-7
- Lee, C.J., Hwang, J.W. & Oh, S.W. (2022). Effect of Combined Radio-Frequency/Vacuum-Press Drying on the Strength Properties of Japanese larch Board. Drying Technology, 40(14), 2849-2856.
https://doi.org/10.1080/07373937.2021.1967972
- Marshall, E.M. & Bakker, A. (2009). Computational Fluid Mixing. In Food Mixing: Principles and Applications. Fluent Inc. 257-345. https://doi.org/10.1002/0471451452.ch5
- Norton, T. & Sun, D.W. (2006). Computational Fluid Dynamics (CFD) - an Effective and Efficient Design and Analysis Tool for the Food Industry: A Review. Trends in Food Science and Technology, 17(11), 600-620. https://doi.org/10.1016/j.tifs.2006.05.004
- Norton, T., Sun, D.W., Grant, J., Fallon, R. & Dodd, V. (2007). Applications of Computational Fluid Dynamics (CFD) in the Modelling and Design of Ventilation Systems in the Agricultural Industry: A Review. Bioresource Technology, 98(12), 2386-2414. https://doi.org/10.1016/j.biortech.2006.11.025
- Özşahin, Ş., Demir, A. & Aydın, İ. (2019). Optimization of Veneer Drying Temperature for the Best Mechanical Properties of Plywood via Artificial Neural Network. Journal of Anatolian Environmental and Animal Sciences, 4(4), 589-597. https://doi.org/10.35229/jaes.635302
- Rumsey, C. (2021). Turbulence Modeling Resource The Wilcox k-omega Turbulence Model. Langley Research Center Turbulence Modeling Resource. https://turbmodels.larc.nasa.gov/wilcox.html
- Smit, G.J.F., du Plessis, J.P., & du Plessis, J.P. (2007). Modelling of Airflow Through a Stack in a Timber-Drying Kiln. Applied Mathematical Modelling, 31(2), 270-282. https://doi.org/10.1016/j.apm.2005.11.003
- Sun, D.W. (2007). Computational Fluid Dynamics in Food Processing. In Computational Fluid Dynamics in Food Processing (Second). Taylor & Francis.https://doi.org/10.1201/b16696-16
- Tarmian, A., Ciritcioğlu, H.H., Ünsal, Ö., Ahmadi, P., Gholampour, B., et al. (2022). Efficiency of Radiofrequency-Vacuum (RF/V) Technology for Mixed-Species Drying of Wood Disks with Inherent Defects. Drying Technology, 40(5), 1002-1012. https://doi.org/10.1080/07373937.2020.1833214
- Tuscarora Wood Midwest. (2021). Why Kiln Dry Wood? |Tuscarora Wood Midwest. https://www.tuscarorawoodmidwest.com/tuscarora-news/why-kiln-dry-wood/
- Üçüncü, K., Aydın, A. & Tiryaki, S. (2017). Experimental Investigation of Wood Moisture Change in Heated Indoor Climate Conditions. İleri Teknoloji Bilimleri Dergisi, 6(3),632-645.
- Ünsal, Ö., Dündar, T., Görgün, H.V., Kaymakci, A., Korkut, S., et al. (2020). Optimizing Lumber Drying Schedules for Oriental Beech and Sessile Oak Using Acoustic Emission. BioResources, 15(3), 6012-6022.
https://doi.org/10.15376/biores.15.3.6012-6022.
- Vaz Jr, M., Zdanski, P.S.B., Cerqueira, R.F. & Possamai, D.G. (2013). Conjugated Heat and Mass Transfer in Convective Drying in Compact Wood Kilns: A System Approach. Advances in Mechanical Engineering, 5, 538931.https://doi.org/10.1155/2013/538931
- Versteeg, H.K. & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. In Actas Urologicas Espanolas (Second Edi, Issue 5). Pearson.
- Ward, J.C. (1991). Drying Defects. In W.T. Simpson (Ed.), Dry kiln operator’s manual (179-205). USDA Forest Product Laboratory. https://doi.org/10.1016/b978-0-08-010635-9.50011-2
- Wilcox, D.C. (2006). Turbulence Modeling for CFD. DCW Industries.
- Xia, B. & Sun, D.W. (2002). Applications of Computational Fluid Dynamics (CFD) in the Food İndustry: A Review. Computers and Electronics in Agriculture, 34(1-3), 5-24. https://doi.org/10.1016/S0168-1699(01)00177-6