Research Article
BibTex RIS Cite

Fagus orientalis Yüzeyinin ZnO/TiO2/FAS-17 Bazlı Nanopartiküllerle İşlenmesi

Year 2023, Volume: 23 Issue: 3, 175 - 185, 06.12.2023
https://doi.org/10.17475/kastorman.1394874

Abstract

Çalışmanın amacı: Bu araştırmada, kayın ağacının (Fagus Orientalis) yüzeyi, ahşap endüstrisi tarafından yaygın olarak kullanılan güçlü biyoyapısı nedeniyle bir substrat olarak seçilmiştir. Hizmet ömrünü artırmak amacıyla, ZnO, TiO2 ve FAS-17 nanopartiküller ile fonksiyonelleştirilmiştir.
Materyal ve yöntem: FAS-17 (Trimetoksisilan) ve amonyum hekzaflorotitanat Sigma-Aldrich'ten ve çinko borat Etimine S.A.'dan satın alınmıştır. Metanol, etil alkol, hidroklorik asit, sodyum hidroksit ve çinko oksit TEKKİM tarafından sağlanmıştır. Karakterizasyon yöntemleri arasında FTIR, TG/DTA, XRD, SEM ve EDX yer almıştır. Hidrofobiklik KSV Cam101 kullanılarak su temas açısı ile belirlenmiştir. UV-Vis analizinde Shimadzu UV-160 spektrofotometresi kullanılmış, yüzey pürüzlülüğü Marsurf M 300 cihazı (ISO 4287) ile ölçülmüş ve renk analizi Datacolor Elrepho 450 X spektrometresi (ASTM 2021) ile gerçekleştirilmiştir.
Temel sonuçlar: Ahşabın termal stabilitesi, ZnO/TiO2 nanopartiküllerin hidrotermal olarak yerleştirilmesiyle önemli ölçüde iyileştirilmiştir. Ayrıca, FAS-17 olarak adlandırılan Triethoxy-1H,1H,2H,2H-perfluorodesilsilan (C14H19F13O3Si) kullanılarak etkili bir hidrofobizasyon sağlanmıştır.
Araştırma vurguları: ZnO tabanlı nano biyomimetik akıllı yüzeyin sentezi, ahşap malzemeye hidrofobik bir özellik kazandırmıştır. Lignoselülozik yüzeyin bu yeni fonksiyonel özelliği, hijyenin önemli olduğu her türlü alanda tercih edilmesini sağlayabilir.

References

  • Aad, R., Simic, V., Cunff, L. L., Rocha, L., Sallet,V., Sartel, C., Lusson, A., Couteaua, C. & Lerondel, G. (2013). ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives. Nanoscale, 5, 9176-9180.
  • Ali, M. R., Abdullah, U. H., Ashaari, Z., Hamid, N. H., & Hua, L. S. (2021). Hydrothermal Modification of Wood: A Review. Polymers, 13(16), 2612.
  • ASTM, Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. (2021).
  • Báder, M., Németh, R., Sandak, J., & Sandak, A. (2020). FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose, 27(12), 6811-6829.
  • Bennert, T., Hanson, D., Maher, A. & Vitillo, N. (2005). Influence of pavement surface type on tire/pavement generated noise. Journal of Testing and Evaluation, 33 (2), 94-100.
  • Beyene, D., Chae, M., Vasanthan, T., & Bressler, D. C. (2020). A Biorefinery Strategy That Introduces Hydrothermal Treatment Prior to Acid Hydrolysis for Co-generation of Furfural and Cellulose Nanocrystals. Frontiers in Chemistry, 8.
  • Burhenne, L., Messmer, J., Aicher, T., & Laborie, M. P. (2013). The effect of the biomass components lignin, cellulose, and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177-184.
  • Cansiong Guerrra, K. S. & Escobar Avilés, J. (2021). The use of wood as Smart Building Material = El uso de la madera como Smart Building Material. Building & Management, 4(1), 36.
  • Cui, W., Zhang, N., Xu, M., & Cai, L. (2017). Combined effects of ZnO particle deposition and heat treatment on dimensional stability and mechanical properties of poplar wood. Scientific Reports, 7(1).
  • Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti- ultraviolet properties. Applied Surface Science, 332, 565-572.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of Wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gao, L., Xiao, S., Gan, W., Zhan X. & Li, J., (2015b). Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. Royal Society of Chemistry, 5, 98203-98208.
  • ISO 4287, (1997). Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standard Organization.
  • Kutnar, A. (2011). Adhesive bonding of hydrothermally modified wood. Adhesive Properties in Nanomaterials, Composites and Films, 71-82.
  • Li, N., Xia, T., Heng, L. & Liu, L. (2013). Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102(25), 251603.
  • Ma, G., Wang, X., Cai, W., Ma, C., Wang, X., Zhu, Y., Kan, Y., Xing, W., & Hu, Y. (2022). Preparation and Study on Nitrogen- and Phosphorus-Containing Fire Resistant Coatings for Wood by UV-Cured Methods. Frontiers in Materials, 9.
  • Niu, K., & Song, K. (2021). Surface coating and interfacial properties of hot-waxed wood using modified polyethylene wax. Progress in Organic Coatings, 150, 105947.
  • Huang, S., Hu, Y., & Pan, W. (2011). Relationship between the structure and hydrophobic performance of Ni–TiO2 nanocomposite coatings by electrodeposition. Surface and Coatings Technology, 205(13–14), 3872–3876.
  • Ouajai, S., & Shanks, R. A. (2005). Composition, structure, and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş A. (2018b). Göknar odunun yüzey kalitesi üzerine yaşlandırma süresi, zımparalama ve kesit yönü etkisinin araştırılması [Investigation of the effect of aging time, sanding, and cross-section on the surface quality of fir wood] Bartın Orman Fakültesi Dergisi, 20(2), 194-204.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş, A. (2018a). Akıllı malzemeler için biyomimetik yüzey tasarımları [Biomimetic surface designs for smart materials] Journal of Bartin Faculty of Forestry 20(3), 664-676.
  • Qader I.N., Kok M., Dagdelen F., Aydogdu Y, (2019). “A review of smart materials: researches and applications,” El-Cezerî Journal of Science and Engineering, 6(3); 755-788
  • Qu, L., Rahimi, S., Qian, J., He, L., He, Z., & Yi, S. (2021). Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polymer Degradation and Stability, 183, 109429.
  • Rahimi, A. R., Modarress, H., and Iranagh, S. A. (2011) Effect of alumina nanoparticles as nanocomposites on morphology and corrosion resistance of electroless Ni–P coatings,” Surface Engineering 27(1) 26-31.
  • Ramazanoğlu, D., & Özdemir, F. (2023). Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry, 24(2), 122-133.
  • Ramazanoğlu, D., & Özdemir, F. (2019). Lignocellulosic-based smart landscape composites, in: Proceedings of the III. International Mediterranean Forest and Environment Symposium, Kahramanmaraş, Turkey, 637-642.
  • Ramazanoğlu, D., & Özdemı̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması, Turkish Journal of Forestry, 21(3), 324-33.
  • Ramazanoğlu, D., & Özdemir, F. (2020a). Ön işlem olarak uygulanan ultrasonik banyonun ceviz kaplamaların özellikleri üzerine etkileri Bartın Orman Fakültesi Dergisi, 22(2), 479-484.
  • Ramazanoğlu, D., & Özdemir, F. (2021b). Intelligent biomimetic artificial form for lignocellulosic surfaces. Kastamonu University Journal of Forestry Faculty, 21(2), 95-103.
  • Ramazanoğlu, D., & Özdemir, F. (2022). Biomimetic surface accumulation on Fagus orientalis. Applied Nanoscience, 12, 2421-2428.
  • Ramazanoğlu, D., & Özdemi̇r. F., (2020b). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması Turkish Journal of Forestry, 21(3), 324-331.
  • Ramazanoğlu, D. (2020). Akıllı Biyomimetik Nano Hibrit Yüzey Formlarının Tasarımı ve Lignoselülozik Yüzeyde Hidrotermal Modifikasyonunun İncelenmesi Ph.D. Dissertation, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, Turkey.
  • Ramazanoğlu. D. & Özdemir, F. (2021a). ZnO-based nano biomimetic smart artificial form located on lignocellulosic surface with hydrothermal approach. Kastamonu University Journal of Forestry Faculty, 21(1), 12-20.
  • Hsieh, M.-C., Hung, K.-C., Xu, J.-W., Wu, Y.-H., Chang, W.-S., & Wu, J.-H. (2022). Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers, 15(1), 147.
  • Nakayasu, Y., Goto, Y., Katsuyama, Y., Itoh, T., & Watanabe, M. (2022). Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization. Carbon Trends, 8, 100190.
  • Sun, Y. X., Wang, L., Dong, X. Y., Ren, Z. L. & Meng, W. S. (2013). Synthesis, characterization, and crystal structure of a supramolecular CoII complex containing Salen-type bisoxime. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(5), 599-603.
  • Ugolev, B. N. (2006). Frozen strains of wood as natural intelligent material. In: Proceedings of 5th IUFRO symposium wood structure and properties, Zvolen, Slovakia, 423-426.
  • Ugolev, B. N. (2014). Wood as a natural smart material. Wood Science Technology, 48, 553-568.
  • Xiang, E., Huang, R., & Yang, S. (2021). Change in Micromechanical Behavior of Surface Densified Wood Cell Walls in Response to Superheated Steam Treatment. Forests, 12(6), 693.
  • Yeo, J. Y., Chin, B. L. F., Tan, J. K., & Loh, Y. S. (2019). Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute, 92(1), 27-37.
  • Zhai, M., Guo, L., Zhang, Y., Dong, P., Qi, G., and Huang, Y. (2016). Kinetic parameters of biomass pyrolysis by TGA, BioRes. 11(4), 8548-8557.

Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles

Year 2023, Volume: 23 Issue: 3, 175 - 185, 06.12.2023
https://doi.org/10.17475/kastorman.1394874

Abstract

Aim of study: In this research, the surface of Fagus orientalis (beechwood) was chosen as a substrate due to its widely used strong biostructure in the wood industry. It was functionalized with ZnO, TiO2, and FAS-17 nanoparticles to enhance its service life.
Material and methods: FAS-17 (Trimethoxysilane) and ammonium hexafluorotitanate were purchased from Sigma-Aldrich, and zinc borate from Etimine S.A. Methanol, ethyl alcohol, hydrochloric acid, sodium hydroxide, and zinc oxide were provided by TEKKIM. Characterization methods included FTIR, TG/DTA, XRD, SEM, and EDX. Hydrophobicity was determined by water contact angle using KSV Cam101. UV-Vis analysis used a Shimadzu UV-160 spectrophotometer, surface roughness was measured with a Marsurf M 300 device (ISO 4287), and color analysis was performed with a Datacolor Elrepho 450 X spectrometer (ASTM 2021).
Main results: The thermal stability of wood was significantly improved through the hydrothermal deposition of ZnO/TiO2 nanoparticles. Additionally, hydrophobization was achieved using Triethoxy-1H,1H,1H,2H,2H,2H-perfluorodecylsilane (C14H19F13O3Si), referred to as FAS-17.
Research highlights: The study demonstrated that the introduction of ZnO/TiO2 nanoparticles improved the thermal stability of wood. Furthermore, the use of FAS-17 resulted in effective hydrophobization. The thermal stability of wood was improved with ZnO/TiO2 nanoparticles. In addition, hydrophobization was supplied by FAS-17.

References

  • Aad, R., Simic, V., Cunff, L. L., Rocha, L., Sallet,V., Sartel, C., Lusson, A., Couteaua, C. & Lerondel, G. (2013). ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives. Nanoscale, 5, 9176-9180.
  • Ali, M. R., Abdullah, U. H., Ashaari, Z., Hamid, N. H., & Hua, L. S. (2021). Hydrothermal Modification of Wood: A Review. Polymers, 13(16), 2612.
  • ASTM, Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. (2021).
  • Báder, M., Németh, R., Sandak, J., & Sandak, A. (2020). FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose, 27(12), 6811-6829.
  • Bennert, T., Hanson, D., Maher, A. & Vitillo, N. (2005). Influence of pavement surface type on tire/pavement generated noise. Journal of Testing and Evaluation, 33 (2), 94-100.
  • Beyene, D., Chae, M., Vasanthan, T., & Bressler, D. C. (2020). A Biorefinery Strategy That Introduces Hydrothermal Treatment Prior to Acid Hydrolysis for Co-generation of Furfural and Cellulose Nanocrystals. Frontiers in Chemistry, 8.
  • Burhenne, L., Messmer, J., Aicher, T., & Laborie, M. P. (2013). The effect of the biomass components lignin, cellulose, and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177-184.
  • Cansiong Guerrra, K. S. & Escobar Avilés, J. (2021). The use of wood as Smart Building Material = El uso de la madera como Smart Building Material. Building & Management, 4(1), 36.
  • Cui, W., Zhang, N., Xu, M., & Cai, L. (2017). Combined effects of ZnO particle deposition and heat treatment on dimensional stability and mechanical properties of poplar wood. Scientific Reports, 7(1).
  • Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti- ultraviolet properties. Applied Surface Science, 332, 565-572.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of Wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gao, L., Xiao, S., Gan, W., Zhan X. & Li, J., (2015b). Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. Royal Society of Chemistry, 5, 98203-98208.
  • ISO 4287, (1997). Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standard Organization.
  • Kutnar, A. (2011). Adhesive bonding of hydrothermally modified wood. Adhesive Properties in Nanomaterials, Composites and Films, 71-82.
  • Li, N., Xia, T., Heng, L. & Liu, L. (2013). Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102(25), 251603.
  • Ma, G., Wang, X., Cai, W., Ma, C., Wang, X., Zhu, Y., Kan, Y., Xing, W., & Hu, Y. (2022). Preparation and Study on Nitrogen- and Phosphorus-Containing Fire Resistant Coatings for Wood by UV-Cured Methods. Frontiers in Materials, 9.
  • Niu, K., & Song, K. (2021). Surface coating and interfacial properties of hot-waxed wood using modified polyethylene wax. Progress in Organic Coatings, 150, 105947.
  • Huang, S., Hu, Y., & Pan, W. (2011). Relationship between the structure and hydrophobic performance of Ni–TiO2 nanocomposite coatings by electrodeposition. Surface and Coatings Technology, 205(13–14), 3872–3876.
  • Ouajai, S., & Shanks, R. A. (2005). Composition, structure, and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş A. (2018b). Göknar odunun yüzey kalitesi üzerine yaşlandırma süresi, zımparalama ve kesit yönü etkisinin araştırılması [Investigation of the effect of aging time, sanding, and cross-section on the surface quality of fir wood] Bartın Orman Fakültesi Dergisi, 20(2), 194-204.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş, A. (2018a). Akıllı malzemeler için biyomimetik yüzey tasarımları [Biomimetic surface designs for smart materials] Journal of Bartin Faculty of Forestry 20(3), 664-676.
  • Qader I.N., Kok M., Dagdelen F., Aydogdu Y, (2019). “A review of smart materials: researches and applications,” El-Cezerî Journal of Science and Engineering, 6(3); 755-788
  • Qu, L., Rahimi, S., Qian, J., He, L., He, Z., & Yi, S. (2021). Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polymer Degradation and Stability, 183, 109429.
  • Rahimi, A. R., Modarress, H., and Iranagh, S. A. (2011) Effect of alumina nanoparticles as nanocomposites on morphology and corrosion resistance of electroless Ni–P coatings,” Surface Engineering 27(1) 26-31.
  • Ramazanoğlu, D., & Özdemir, F. (2023). Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry, 24(2), 122-133.
  • Ramazanoğlu, D., & Özdemir, F. (2019). Lignocellulosic-based smart landscape composites, in: Proceedings of the III. International Mediterranean Forest and Environment Symposium, Kahramanmaraş, Turkey, 637-642.
  • Ramazanoğlu, D., & Özdemı̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması, Turkish Journal of Forestry, 21(3), 324-33.
  • Ramazanoğlu, D., & Özdemir, F. (2020a). Ön işlem olarak uygulanan ultrasonik banyonun ceviz kaplamaların özellikleri üzerine etkileri Bartın Orman Fakültesi Dergisi, 22(2), 479-484.
  • Ramazanoğlu, D., & Özdemir, F. (2021b). Intelligent biomimetic artificial form for lignocellulosic surfaces. Kastamonu University Journal of Forestry Faculty, 21(2), 95-103.
  • Ramazanoğlu, D., & Özdemir, F. (2022). Biomimetic surface accumulation on Fagus orientalis. Applied Nanoscience, 12, 2421-2428.
  • Ramazanoğlu, D., & Özdemi̇r. F., (2020b). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması Turkish Journal of Forestry, 21(3), 324-331.
  • Ramazanoğlu, D. (2020). Akıllı Biyomimetik Nano Hibrit Yüzey Formlarının Tasarımı ve Lignoselülozik Yüzeyde Hidrotermal Modifikasyonunun İncelenmesi Ph.D. Dissertation, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, Turkey.
  • Ramazanoğlu. D. & Özdemir, F. (2021a). ZnO-based nano biomimetic smart artificial form located on lignocellulosic surface with hydrothermal approach. Kastamonu University Journal of Forestry Faculty, 21(1), 12-20.
  • Hsieh, M.-C., Hung, K.-C., Xu, J.-W., Wu, Y.-H., Chang, W.-S., & Wu, J.-H. (2022). Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers, 15(1), 147.
  • Nakayasu, Y., Goto, Y., Katsuyama, Y., Itoh, T., & Watanabe, M. (2022). Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization. Carbon Trends, 8, 100190.
  • Sun, Y. X., Wang, L., Dong, X. Y., Ren, Z. L. & Meng, W. S. (2013). Synthesis, characterization, and crystal structure of a supramolecular CoII complex containing Salen-type bisoxime. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(5), 599-603.
  • Ugolev, B. N. (2006). Frozen strains of wood as natural intelligent material. In: Proceedings of 5th IUFRO symposium wood structure and properties, Zvolen, Slovakia, 423-426.
  • Ugolev, B. N. (2014). Wood as a natural smart material. Wood Science Technology, 48, 553-568.
  • Xiang, E., Huang, R., & Yang, S. (2021). Change in Micromechanical Behavior of Surface Densified Wood Cell Walls in Response to Superheated Steam Treatment. Forests, 12(6), 693.
  • Yeo, J. Y., Chin, B. L. F., Tan, J. K., & Loh, Y. S. (2019). Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute, 92(1), 27-37.
  • Zhai, M., Guo, L., Zhang, Y., Dong, P., Qi, G., and Huang, Y. (2016). Kinetic parameters of biomass pyrolysis by TGA, BioRes. 11(4), 8548-8557.
There are 41 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering (Other)
Journal Section Articles
Authors

Doğu Ramazanoğlu

Ferhat Özdemir

Early Pub Date December 1, 2023
Publication Date December 6, 2023
Published in Issue Year 2023 Volume: 23 Issue: 3

Cite

APA Ramazanoğlu, D., & Özdemir, F. (2023). Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty, 23(3), 175-185. https://doi.org/10.17475/kastorman.1394874
AMA Ramazanoğlu D, Özdemir F. Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty. December 2023;23(3):175-185. doi:10.17475/kastorman.1394874
Chicago Ramazanoğlu, Doğu, and Ferhat Özdemir. “Treatment of Fagus Orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”. Kastamonu University Journal of Forestry Faculty 23, no. 3 (December 2023): 175-85. https://doi.org/10.17475/kastorman.1394874.
EndNote Ramazanoğlu D, Özdemir F (December 1, 2023) Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty 23 3 175–185.
IEEE D. Ramazanoğlu and F. Özdemir, “Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”, Kastamonu University Journal of Forestry Faculty, vol. 23, no. 3, pp. 175–185, 2023, doi: 10.17475/kastorman.1394874.
ISNAD Ramazanoğlu, Doğu - Özdemir, Ferhat. “Treatment of Fagus Orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”. Kastamonu University Journal of Forestry Faculty 23/3 (December 2023), 175-185. https://doi.org/10.17475/kastorman.1394874.
JAMA Ramazanoğlu D, Özdemir F. Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty. 2023;23:175–185.
MLA Ramazanoğlu, Doğu and Ferhat Özdemir. “Treatment of Fagus Orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”. Kastamonu University Journal of Forestry Faculty, vol. 23, no. 3, 2023, pp. 175-8, doi:10.17475/kastorman.1394874.
Vancouver Ramazanoğlu D, Özdemir F. Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty. 2023;23(3):175-8.

14178  14179       14165           14166           14167            14168