Research Article
BibTex RIS Cite

The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia

Year 2025, Volume: 25 Issue: 1, 118 - 126, 26.03.2025
https://doi.org/10.17475/kastorman.1660620

Abstract

Aim of study: In this study, the effects of bark streak tapping resin extraction on tree mortality risk and survival rates across diameter classes in Pinus brutia forests are looked into.
Area of study: Research was conducted in the Korudağ Forest Sub-District, Keşan Forestry Department, and Çanakkale Forest Regional Directorate in Türkiye.
Material and method: We monitored 396 trees for 17 months, extracting resin every 15 days. We used Kaplan-Meier survival analysis to assess the mortality risks for three diameter classes: pole stage (8-19.9 cm), small wood (20-35.9 cm), and mature (36-51.9 cm.)
Main results: Smaller-diameter trees (8-19.9 cm) exhibited the highest mortality risk with a survival rate of 71.1%, while medium-diameter trees (20-35.9 cm) had a survival rate of 93.2%, and larger-diameter trees (36-51.9 cm) showed complete survival. Overall, 41 trees (89.6%) died, with significant differences in survival probabilities among diameter classes.
Research highlights: Smaller-diameter trees are more vulnerable to mortality during resin tapping, underscoring the need for sustainable management strategies.

References

  • Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhäusser, S.M., Tissue, D.T. & et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285-1291. https://doi.org/10.1038/s41559-017-0248-x
  • Allen, C.D. (2009). Climate-induced forest dieback: an escalating global phenomenon. Unasylva, 231, 60.
  • Boone, C.K., Aukema, B.H., Bohlmann, J., Carroll, A.L. & Raffa, K.F. (2011). Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 41, 1174-1188. https://doi.org/10.1139/x11-041
  • Boydak, M. (2004). Silvicultural characteristics and natural regeneration of Pinus brutia Ten. — a review. Plant Ecology, 171, 153-163. https://doi.org/10.1023/B:VEGE.0000029373.54545.d2
  • Caglayan, İ., Dolu, A.Ö., Kabak, Ö., Rodríguez-García, A., Demirel, T. & et al. (2024). Dynamics of resin yield in Pinus brutia: A quantitative analysis using bark streak tapping. Industrial Crops and Products, 221, 119344. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.119344
  • Calama, R., Martínez, C., Gordo, J., Del Río, M., Menéndez-Miguélez, M. & Pardos, M. (2024). The impact of climate and management on recent mortality in Pinus pinaster resin-tapped forests of inland Spain. Forestry: An International Journal of Forest Research, 97, 120-132. https://doi.org/10.1093/forestry/cpad023
  • Daltry, J.C., Prospere, A., Toussaint, A., Gengelbach, J. & Morton, M.N. (2015). Making business scents: how to harvest incense sustainably from the globally threatened lansan tree Protium attenuatum. Oryx, 49, 431-441.
  • Eshete, A., Teketay, D., Lemenih, M. & Bongers, F. (2012). Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. seeds from Metema District, northwestern Ethiopia. Forest Ecology and Management, 269, 31–36. https://doi.org/https://doi.org/10.1016/j.foreco.2011.12.049
  • FAO, (2010). Global forest resources assessment 2010: Chapter 4 - Forest health and vitality. Rome.
  • FAO, (2003). Forest Harvest: An Overview of Non Timber Forest Products in the Mediterranean Region.
  • Garcia-Forner, N., Campelo, F., Carvalho, A., Vieira, J., Rodriguez-Pereiras, A. & et al. (2021). Growth-defence trade-offs in tapped pines on anatomical and resin production. Forest Ecology and Management, 496. https://doi.org/10.1016/j.foreco.2021.119406
  • Gaylord, M.L., Kolb, T.E., Pockman, W.T., Plaut, J.A., Yepez, E.A. & et al. (2013). Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytologist, 198, 567-578. https://doi.org/https://doi.org/10.1111/nph.12174
  • Gazol, A., Camarero, J.J., Vicente-Serrano, S.M., Sánchez-Salguero, R., Gutiérrez, E. & et al. (2018). Forest resilience to drought varies across biomes. Global Change Biology, 24, 2143-2158. https://doi.org/https://doi.org/10.1111/gcb.14082
  • GDF, (2019). Distribution of forest areas according to tree species, General directorate of forestry statistics, General Directorate of Forestry; Ministry of Agriculture and Forestry; Republic of Turkey
  • GDF, (2017). OGM Reçine Eylem Planı. Ankara.
  • Génova, M., Caminero, L. & Dochao, J. (2014). Resin tapping in Pinus pinaster: Effects on growth and response function to climate. European Journal of Forest Research, 133, 323–333. https://doi.org/10.1007/s10342-013-0764-4
  • Hammond, W.M., Williams, A.P., Abatzoglou, J.T., Adams, H.D., Klein, T. & et al. (2022). Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13, 1761.
  • Huang, J., Kautz, M., Trowbridge, A.M., Hammerbacher, A., Raffa, K.F. & et al. (2020). Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 225, 26-36. https://doi.org/https://doi.org/10.1111/nph.16173
  • Kaplan, E.L. & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
  • Krokene, P. & Nagy, N.E. (2012). Anatomical aspects of resin-based defences in pine. Pine resin: Biology, Chemistry and Application, 67-86.
  • López-Álvarez, Ó., Zas, R. & Marey-Perez, M., (2023). Resin tapping: A review of the main factors modulating pine resin yield. Industrial Crops and Products, 202. https://doi.org/10.1016/j.indcrop.2023.117105
  • Moura, M., Campelo, F., Nabais, C. & Garcia-Forner, N. (2023). Resin tapping influence on maritime pine growth depends on tree age and stand characteristics. European Journal of Forest Research, 142, 965–980. https://doi.org/10.1007/s10342-023-01568-7
  • Pearce, R.B. (1996). Antimicrobial defences in the wood of living trees. New Phytologist, 132, 203–233. https://doi.org/https://doi.org/10.1111/j.1469-8137.1996.tb01842.x
  • Rodrigues-Corrêa, K.C. da S., de Lima, J.C. & Fett-Neto, A.G. (2012). Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food and Energy Security. 1, 81–93. https://doi.org/https://doi.org/10.1002/fes3.13
  • Rodríguez-García, A., Martín, J.A., López, R., Sanz, A. & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.03.033
  • Trapp, S. & Croteau, R. (2001). Defensive resin biosynthesis in conifers. Annual Review of Plant Biolgy, 52, 689-724.
  • van der Maaten, E., Mehl, A., Wilmking, M. & van der Maaten-Theunissen, M. (2017). Tapping the tree-ring archive for studying effects of resin extraction on the growth and climate sensitivity of Scots pine. Forest Ecosystems, 4, 7. https://doi.org/10.1186/s40663-017-0096-9
  • Wiley, E. (2020). Do Carbon Reserves Increase Tree Survival during Stress and Following Disturbance? Current Forestry Reports, 6, 14-25. https://doi.org/10.1007/s40725-019-00106-2
  • Yousefi, A., Ghahramany, L., Ghazanfari, H., Pulido, F. & Moreno, G. (2020). Biometric indices of wild pistachio (Pistacia atlantica Desf.) trees under resin extraction in Western Iran. Agroforestry Systems, 94, 1977-1988. https://doi.org/10.1007/s10457-020-00518-1
  • Zeng, X.M., Sun, S.W., Wang, Y.Y., Chang, Y.X., Tao, X.X. & et al. (2021). Does resin tapping affect the tree-ring growth and climate sensitivity of the Chinese pine (Pinus tabuliformis) in the Loess Plateau, China? Dendrochronologia, 65. https://doi.org/10.1016/j.dendro.2020.125800
  • Zevgolis, Y.G., Sazeides, C.I., Zannetos, S.P., Grammenou, V., Fyllas, N.M. & et al. (2022). Investigating the effect of resin collection and detecting fungal infection in resin-tapped and non-tapped pine trees, using minimally invasive and non-invasive diagnostics. Forest Ecology and Management, 524, 120498. https://doi.org/https://doi.org/10.1016/j.foreco.2022.120498
  • Zhao, S. & Erbilgin, N. (2019). Larger Resin Ducts Are Linked to the Survival of Lodgepole Pine Trees During Mountain Pine Beetle Outbreak. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01459

Kızılçamda (Pinus brutia) Reçine Üretiminin Ağaç Ölüm Oranına Etkisi

Year 2025, Volume: 25 Issue: 1, 118 - 126, 26.03.2025
https://doi.org/10.17475/kastorman.1660620

Abstract

Çalışmanın amacı: Bu çalışmada, kızılçam (Pinus brutia) ormanlarında açık yara yöntemiyle yapılan reçine üretiminin ağaçların kuruma riski ve farklı çap sınıflarındaki yaşama oranları üzerindeki etkileri incelenmiştir.
Çalışma alanı: Araştırma, Türkiye’nin Çanakkale Orman Bölge Müdürlüğü, Keşan Orman İşletme Müdürlüğü’ne bağlı Korudağ Orman İşletme Şefliği sınırlarında gerçekleştirilmiştir.
Materyal ve yöntem: 396 ağaç, 15 günde bir reçine üretilerek 17 ay boyunca izlenmiştir. Kuruma risklerini değerlendirmek için Kaplan-Meier yaşama analizi kullanılmış ve ağaçlar üç çap sınıfına ayrılmıştır: sırıklık ve direklik (8-19.9 cm), ince ağaçlık (20-35.9 cm) ve orta ağaçlık (36-51.9 cm)
Temel sonuçlar: Küçük çaplı ağaçlar (8-19.9 cm) %71.1 yaşama oranı ile en yüksek kuruma riskini göstermiştir. Orta çaplı ağaçlarda (20-35.9 cm) yaşama oranı %93.2 iken, büyük çaplı ağaçlar (36-51.9 cm) tamamen hayatta kalmıştır. Genel olarak, çap sınıfları arasında önemli farklılıklarla birlikte toplamda 41 ağaç (%89.6) kurumuştur.
Araştırma vurguları: Küçük çaplı ağaçlar, açık yara yöntemiyle yapılan reçine üretimi sırasında kuruma riskine daha duyarlıdır ve bu durum sürdürülebilir yönetim stratejilerinin gerekliliğini ortaya koymaktadır.

References

  • Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhäusser, S.M., Tissue, D.T. & et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285-1291. https://doi.org/10.1038/s41559-017-0248-x
  • Allen, C.D. (2009). Climate-induced forest dieback: an escalating global phenomenon. Unasylva, 231, 60.
  • Boone, C.K., Aukema, B.H., Bohlmann, J., Carroll, A.L. & Raffa, K.F. (2011). Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 41, 1174-1188. https://doi.org/10.1139/x11-041
  • Boydak, M. (2004). Silvicultural characteristics and natural regeneration of Pinus brutia Ten. — a review. Plant Ecology, 171, 153-163. https://doi.org/10.1023/B:VEGE.0000029373.54545.d2
  • Caglayan, İ., Dolu, A.Ö., Kabak, Ö., Rodríguez-García, A., Demirel, T. & et al. (2024). Dynamics of resin yield in Pinus brutia: A quantitative analysis using bark streak tapping. Industrial Crops and Products, 221, 119344. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.119344
  • Calama, R., Martínez, C., Gordo, J., Del Río, M., Menéndez-Miguélez, M. & Pardos, M. (2024). The impact of climate and management on recent mortality in Pinus pinaster resin-tapped forests of inland Spain. Forestry: An International Journal of Forest Research, 97, 120-132. https://doi.org/10.1093/forestry/cpad023
  • Daltry, J.C., Prospere, A., Toussaint, A., Gengelbach, J. & Morton, M.N. (2015). Making business scents: how to harvest incense sustainably from the globally threatened lansan tree Protium attenuatum. Oryx, 49, 431-441.
  • Eshete, A., Teketay, D., Lemenih, M. & Bongers, F. (2012). Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. seeds from Metema District, northwestern Ethiopia. Forest Ecology and Management, 269, 31–36. https://doi.org/https://doi.org/10.1016/j.foreco.2011.12.049
  • FAO, (2010). Global forest resources assessment 2010: Chapter 4 - Forest health and vitality. Rome.
  • FAO, (2003). Forest Harvest: An Overview of Non Timber Forest Products in the Mediterranean Region.
  • Garcia-Forner, N., Campelo, F., Carvalho, A., Vieira, J., Rodriguez-Pereiras, A. & et al. (2021). Growth-defence trade-offs in tapped pines on anatomical and resin production. Forest Ecology and Management, 496. https://doi.org/10.1016/j.foreco.2021.119406
  • Gaylord, M.L., Kolb, T.E., Pockman, W.T., Plaut, J.A., Yepez, E.A. & et al. (2013). Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytologist, 198, 567-578. https://doi.org/https://doi.org/10.1111/nph.12174
  • Gazol, A., Camarero, J.J., Vicente-Serrano, S.M., Sánchez-Salguero, R., Gutiérrez, E. & et al. (2018). Forest resilience to drought varies across biomes. Global Change Biology, 24, 2143-2158. https://doi.org/https://doi.org/10.1111/gcb.14082
  • GDF, (2019). Distribution of forest areas according to tree species, General directorate of forestry statistics, General Directorate of Forestry; Ministry of Agriculture and Forestry; Republic of Turkey
  • GDF, (2017). OGM Reçine Eylem Planı. Ankara.
  • Génova, M., Caminero, L. & Dochao, J. (2014). Resin tapping in Pinus pinaster: Effects on growth and response function to climate. European Journal of Forest Research, 133, 323–333. https://doi.org/10.1007/s10342-013-0764-4
  • Hammond, W.M., Williams, A.P., Abatzoglou, J.T., Adams, H.D., Klein, T. & et al. (2022). Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13, 1761.
  • Huang, J., Kautz, M., Trowbridge, A.M., Hammerbacher, A., Raffa, K.F. & et al. (2020). Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 225, 26-36. https://doi.org/https://doi.org/10.1111/nph.16173
  • Kaplan, E.L. & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
  • Krokene, P. & Nagy, N.E. (2012). Anatomical aspects of resin-based defences in pine. Pine resin: Biology, Chemistry and Application, 67-86.
  • López-Álvarez, Ó., Zas, R. & Marey-Perez, M., (2023). Resin tapping: A review of the main factors modulating pine resin yield. Industrial Crops and Products, 202. https://doi.org/10.1016/j.indcrop.2023.117105
  • Moura, M., Campelo, F., Nabais, C. & Garcia-Forner, N. (2023). Resin tapping influence on maritime pine growth depends on tree age and stand characteristics. European Journal of Forest Research, 142, 965–980. https://doi.org/10.1007/s10342-023-01568-7
  • Pearce, R.B. (1996). Antimicrobial defences in the wood of living trees. New Phytologist, 132, 203–233. https://doi.org/https://doi.org/10.1111/j.1469-8137.1996.tb01842.x
  • Rodrigues-Corrêa, K.C. da S., de Lima, J.C. & Fett-Neto, A.G. (2012). Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food and Energy Security. 1, 81–93. https://doi.org/https://doi.org/10.1002/fes3.13
  • Rodríguez-García, A., Martín, J.A., López, R., Sanz, A. & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.03.033
  • Trapp, S. & Croteau, R. (2001). Defensive resin biosynthesis in conifers. Annual Review of Plant Biolgy, 52, 689-724.
  • van der Maaten, E., Mehl, A., Wilmking, M. & van der Maaten-Theunissen, M. (2017). Tapping the tree-ring archive for studying effects of resin extraction on the growth and climate sensitivity of Scots pine. Forest Ecosystems, 4, 7. https://doi.org/10.1186/s40663-017-0096-9
  • Wiley, E. (2020). Do Carbon Reserves Increase Tree Survival during Stress and Following Disturbance? Current Forestry Reports, 6, 14-25. https://doi.org/10.1007/s40725-019-00106-2
  • Yousefi, A., Ghahramany, L., Ghazanfari, H., Pulido, F. & Moreno, G. (2020). Biometric indices of wild pistachio (Pistacia atlantica Desf.) trees under resin extraction in Western Iran. Agroforestry Systems, 94, 1977-1988. https://doi.org/10.1007/s10457-020-00518-1
  • Zeng, X.M., Sun, S.W., Wang, Y.Y., Chang, Y.X., Tao, X.X. & et al. (2021). Does resin tapping affect the tree-ring growth and climate sensitivity of the Chinese pine (Pinus tabuliformis) in the Loess Plateau, China? Dendrochronologia, 65. https://doi.org/10.1016/j.dendro.2020.125800
  • Zevgolis, Y.G., Sazeides, C.I., Zannetos, S.P., Grammenou, V., Fyllas, N.M. & et al. (2022). Investigating the effect of resin collection and detecting fungal infection in resin-tapped and non-tapped pine trees, using minimally invasive and non-invasive diagnostics. Forest Ecology and Management, 524, 120498. https://doi.org/https://doi.org/10.1016/j.foreco.2022.120498
  • Zhao, S. & Erbilgin, N. (2019). Larger Resin Ducts Are Linked to the Survival of Lodgepole Pine Trees During Mountain Pine Beetle Outbreak. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01459
There are 32 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

İnci Çağlayan

Early Pub Date March 24, 2025
Publication Date March 26, 2025
Submission Date December 16, 2024
Acceptance Date February 10, 2025
Published in Issue Year 2025 Volume: 25 Issue: 1

Cite

APA Çağlayan, İ. (2025). The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia. Kastamonu University Journal of Forestry Faculty, 25(1), 118-126. https://doi.org/10.17475/kastorman.1660620
AMA Çağlayan İ. The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia. Kastamonu University Journal of Forestry Faculty. March 2025;25(1):118-126. doi:10.17475/kastorman.1660620
Chicago Çağlayan, İnci. “The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus Brutia”. Kastamonu University Journal of Forestry Faculty 25, no. 1 (March 2025): 118-26. https://doi.org/10.17475/kastorman.1660620.
EndNote Çağlayan İ (March 1, 2025) The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia. Kastamonu University Journal of Forestry Faculty 25 1 118–126.
IEEE İ. Çağlayan, “The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia”, Kastamonu University Journal of Forestry Faculty, vol. 25, no. 1, pp. 118–126, 2025, doi: 10.17475/kastorman.1660620.
ISNAD Çağlayan, İnci. “The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus Brutia”. Kastamonu University Journal of Forestry Faculty 25/1 (March 2025), 118-126. https://doi.org/10.17475/kastorman.1660620.
JAMA Çağlayan İ. The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia. Kastamonu University Journal of Forestry Faculty. 2025;25:118–126.
MLA Çağlayan, İnci. “The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus Brutia”. Kastamonu University Journal of Forestry Faculty, vol. 25, no. 1, 2025, pp. 118-26, doi:10.17475/kastorman.1660620.
Vancouver Çağlayan İ. The Role of Tree Diameter in Mortality Risks During Resin Production in Pinus brutia. Kastamonu University Journal of Forestry Faculty. 2025;25(1):118-26.

14178  14179       14165           14166           14167            14168