Research Article
BibTex RIS Cite

COMPARISON OF DOWN-SIDE RISK MEASUREMENTS AND MODERN PORTFOLIO THEORY: THE EXAMPLE OF BORSA ISTANBUL

Year 2022, Volume: 13 Issue: 25, 1 - 23, 29.06.2022
https://doi.org/10.36543/kauiibfd.2022.001

Abstract

The concept of risk entered the portfolio world with the work of Harry Markowitz. By considering risk and return together, Markowitz accepts the return distribution symmetrically to create optimal portfolios so that investors can obtain the least risk (variance) and the highest return. When the return distribution is symmetrical, variance can give accurate results as an indicator of risk. But what if the returns show an asymmetrical distribution, can this be the case? Based on this question, the purpose of our research is to compare the portfolio return, risk and covariances of 10 different stocks traded in BIST100 between 1.1.2011-31.4.2021 according to Modern Portfolio theory and Downside risk criteria. In our study, it has been found that Modern Portfolio does not diversify sufficiently, creates portfolios from stocks with high return-risk features, and when the returns do not show a symmetrical distribution, it is insufficient. On the contrary, it has been understood that portfolios created against downside risk measures contain less risk and that more accurate results can be achieved with downside risk measures in asymmetric return distribution.

References

  • Acar, E. (2020). Ortalama-Aşağı Yönlü Varyans Tabanlı Risk Ölçütleri ve Stokastik Getirili Portföy Optimizasyonu. Ekonomi Politika ve Finans Araştırmaları Dergisi, 5(3), 822-844.
  • Artavanıs, N., Dıacogıannıs, G., & Mylonakıs, J. (2010). The D-CAPM: The Case of Great Britain and France. International Journal of Economics and Finance, 2(3), 25-38.
  • Bernstein, H., & Campling, L. (2006). Commodity Studies and Commodity Fetishism I: Trading Down. Journal of Agrarian Change, 6(2), 239-264.
  • Boasson, V., Boasson, E., & Zhou, Z. (2011). Portfolio Optimization in a Mean-Semivariance Framework. Investment Management and Financial Innovations, 8(3), 58-68.
  • Boasson, V., Boasson, E., & Zhou, Z. (2011). Portfolio Optimization in a Mean-Semivariance Framework. Investment Management and Financial Innovations, 8(3), 58-68.
  • Borsa İstanbul. (2021). Mayıs 12, 2021 tarihinde Borsaistanbul: https://www.borsaistanbul.com/tr/sayfa/471/borsa-istanbul-hakkinda adresinden alındı
  • Bowman, E. H., & Hurry, D. (1993). Strategy Through the Option Lens: A İntegrated View of Resource İnvestments and the İncremental-Choice Process. . Academy of Management Review, 18(1), 760-780.
  • Brada, J. (1996). Teorie Portfolia. Vysoká škola Ekonomická.
  • Campion, K. (2009). What Might the Father of MPT Say Today? . Paper of Champion Capital Research, March.
  • Campion, K. (2009). What Might the Father of MPT Say Today? Paper of Champion Capital Research, March.
  • Cipra, B. (1995). How Number Theory Got The Best Of The Pentium Chip. Science 267.5195, 175-176.
  • Cohen, M. H., & Natoli, V. D. (2003). Risk And Utility İn Portfolio Optimization. Physica, 324(2), 81-88.
  • Čumová, D. (2005). Asset Allocation Based on Shortfall Risk. Dissertation thesis.
  • Elton, E. J., & Gruber, M. J. (1995). Modern Portfolio Theory and Investment Analysis. Modern Portfolio Theory and Investment Analysis. içinde New York: New York Wiley.
  • Estrada, J. (2000). The Cost of Equity in Emerging Markets: A Downside Risk Approach. Emerging Markets Quarterly, 4, 19-30.
  • Geambasu , C., Sova , R., Jianu, I., & Geambasu, L. (2013). Risk Measurement in Post-Modern Portfolio Theory: Differences From Modern Portfolio Theory. . Economic Computation & Economic Cybernetics Studies & Research, 47(1), 113-132.
  • Gündoğdu, A. (2018). Modern Portföy Teorisi. Finansın Temel Teorileri (s. 63). içinde İstanbul: Beta Yayınları.
  • Harvey, C. R. (2000). Drivers of Expected Returns in International Markets. . Emerging Markets Quarterly, 1-17.
  • Hoe, L. W., Hafizah, J. S. & Zaidi, I. (2010). An empirical comparison of different risk measures in portfolio optimization. Business and Economic Horizons, 1(1), 39-45.
  • Hogan, W. W., & Warren, J. M. (1974). Toward the development of an equilibrium capital-market model based on semivariance. Journal of Financial and Quantitative Analysis, 9(1), 1-11.
  • İskenderoğlu, Ö., & Karadeniz, E. (2011). Optimum portföyün seçimi: İMKB 30 üzerinde bir uygulama. Çukurova Üniversitesi İktisadi ve İdari Bilimler Dergisi, 12(2), 235-257.
  • Jaaman, S. H., Hoe, L., & Zaidi, I. (2011). Different downside risk approaches in portfolio optimisation. Journal of Quality Measurement and Analysis, 7(1), 77-84.
  • Kahraman, S. R. (2019). Yarı varyans modeli ile portföy optimizasyonu: BİST-100 endeksi üzerinde bir uygulama, (Yayımlanmamış doktora tezi). Afyon Kocatepe Üniversitesi Sosyal Bilimler Enstitüsü, Afyon.
  • Kardiyen, F. (2008). Portföy optimizasyonunda ortalama mutlak sapma modeli ve Markowitz modelinin kullanımı ve İMKB verilerine uygulanması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(2), 335-350.
  • Korkmaz, T., Çevik, E. İ., & Gökhan, S. (2012). İMKB'deki risklerin aşağı yönlü sermaye varlıklarını fiyatlandırma modeli ile test edilmesi. Sermaye Piyasası Dergisi (9), 15-33.
  • Kroencka, T. A., & Schindler, F. (1994). Downside risk optimization in securitized real estate markets. ZEW Centre for European Economic Research, 10-34.
  • Markowitz, H. (1952). Portfolio selection. The Journal Of Finance, 7(1), 77-91.
  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: John Wiley & Sons.
  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768-783.
  • Pala, O. & Aksaraylı, M. (2019). Nicelik kısıtlı ortalama varyans çarpıklık basıklık portföy modeli: Bulanık sezgisel bir yaklaşım. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD), 11 (21), 386-397.
  • Rani, A. (2012). The modern portfolio theory as an investment decision tool. International Journal of Management Research and Reviews, 7(2), 1164-1172.
  • Rom, B. M., & Ferguson, K. W. (1994). Post-modern portfolio theory comes of age. Paper Presented At The Proceedings 4th AFIR International Colloquium.
  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431-449.
  • Sharpe, W.F. (1964). Capital asset prices: A theroy of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.
  • Sumnicht, V. (2008). Practical applications of post-modern portfolio theory. Paper of Sumnicht & Assocoates LLC.
  • Swisher, P., & Kasten, G. W. (2005). Post-modern portfolio theory. Journal of Financial Planning Association, 18(9), 74.
  • TDK.15 Mart 2021 tarihinde TDK: https://sozluk.gov.tr/ adresinden erişildi.
  • Tsai, H. J., Chen, M. C., & Yang, C. Y. (2014). A time-varying perspective on the capm and downside betas. International Review of Economics and Finance, 29, 440-454.
  • Tuna, G., & Tuna, V. E. (2013). İstanbul Menkul Kıymetler Borsası’nda sistematik risk: Geleneksel beta katsayısına karşı aşağı yönlü beta katsayısı. İşletme Araştırmaları Dergisi, 5(1), 189-205.
  • Wikipedia. 18 Mayıs, 2021 tarihinde https://tr.wikipedia.org/wiki/Borsa_%C4%B0stanbul adresinden erişildi.
  • Yıldız, M. E., & Erzurumlu, Y. O. (2018). Testing postmodern portfolio theory based on global and local single factor model: Borsa Istanbul case. Borsa Istanbul Review, 18(4), 259-268.

AŞAĞI YÖNLÜ RİSK ÖLÇÜTLERİ VE MODERN PORTFÖY TEORİSİNİN KARŞILAŞTIRILMASI: BORSA İSTANBUL ÖRNEĞİ

Year 2022, Volume: 13 Issue: 25, 1 - 23, 29.06.2022
https://doi.org/10.36543/kauiibfd.2022.001

Abstract

Portföy dünyasına risk kavramı Harry Markowitz’in çalışmaları ile girmiştir. Markowitz risk ve getiriyi birlikte ele alarak, yatırımcıların en az risk (varyans) ve en yüksek getiri elde edebilmesi için optimal portföyler oluştururken getiri dağılımını simetrik olarak kabul etmektedir. Getiri dağılımı simetrik olduğunda riskin göstergesi olarak varyans doğru sonuçlar verebilir. Peki ya getiriler asimetrik bir dağılım gösterirse bu durum geçerli olabilir mi? Bu sorudan hareketle araştırmada, Modern Portföy teorisi ve Aşağı yönlü risk ölçütlerine göre BIST100 de işlem gören 10 farklı hisse senedinin 1.1.2011-31.4.2021 tarihleri arasındaki portföy getiri, risk ve kovaryansları karşılaştırmalı olarak incelenmiştir. Çalışmada, Modern Portföyün yeterli çeşitlendirme yapmadığı daha çok yüksek getiri-risk özelliğine sahip hisselerden portföyler yarattığı ve getirilerin simetrik dağılım göstermediği zaman yetersiz kaldığı sonucuna ulaşılmıştır. Bunun aksine aşağı yönlü risk ölçütlerine karşı oluşturulan portföylerin daha az risk içerdiği ve asimetrik getiri dağılımda daha doğru sonuçlar verdiği anlaşılmıştır.

References

  • Acar, E. (2020). Ortalama-Aşağı Yönlü Varyans Tabanlı Risk Ölçütleri ve Stokastik Getirili Portföy Optimizasyonu. Ekonomi Politika ve Finans Araştırmaları Dergisi, 5(3), 822-844.
  • Artavanıs, N., Dıacogıannıs, G., & Mylonakıs, J. (2010). The D-CAPM: The Case of Great Britain and France. International Journal of Economics and Finance, 2(3), 25-38.
  • Bernstein, H., & Campling, L. (2006). Commodity Studies and Commodity Fetishism I: Trading Down. Journal of Agrarian Change, 6(2), 239-264.
  • Boasson, V., Boasson, E., & Zhou, Z. (2011). Portfolio Optimization in a Mean-Semivariance Framework. Investment Management and Financial Innovations, 8(3), 58-68.
  • Boasson, V., Boasson, E., & Zhou, Z. (2011). Portfolio Optimization in a Mean-Semivariance Framework. Investment Management and Financial Innovations, 8(3), 58-68.
  • Borsa İstanbul. (2021). Mayıs 12, 2021 tarihinde Borsaistanbul: https://www.borsaistanbul.com/tr/sayfa/471/borsa-istanbul-hakkinda adresinden alındı
  • Bowman, E. H., & Hurry, D. (1993). Strategy Through the Option Lens: A İntegrated View of Resource İnvestments and the İncremental-Choice Process. . Academy of Management Review, 18(1), 760-780.
  • Brada, J. (1996). Teorie Portfolia. Vysoká škola Ekonomická.
  • Campion, K. (2009). What Might the Father of MPT Say Today? . Paper of Champion Capital Research, March.
  • Campion, K. (2009). What Might the Father of MPT Say Today? Paper of Champion Capital Research, March.
  • Cipra, B. (1995). How Number Theory Got The Best Of The Pentium Chip. Science 267.5195, 175-176.
  • Cohen, M. H., & Natoli, V. D. (2003). Risk And Utility İn Portfolio Optimization. Physica, 324(2), 81-88.
  • Čumová, D. (2005). Asset Allocation Based on Shortfall Risk. Dissertation thesis.
  • Elton, E. J., & Gruber, M. J. (1995). Modern Portfolio Theory and Investment Analysis. Modern Portfolio Theory and Investment Analysis. içinde New York: New York Wiley.
  • Estrada, J. (2000). The Cost of Equity in Emerging Markets: A Downside Risk Approach. Emerging Markets Quarterly, 4, 19-30.
  • Geambasu , C., Sova , R., Jianu, I., & Geambasu, L. (2013). Risk Measurement in Post-Modern Portfolio Theory: Differences From Modern Portfolio Theory. . Economic Computation & Economic Cybernetics Studies & Research, 47(1), 113-132.
  • Gündoğdu, A. (2018). Modern Portföy Teorisi. Finansın Temel Teorileri (s. 63). içinde İstanbul: Beta Yayınları.
  • Harvey, C. R. (2000). Drivers of Expected Returns in International Markets. . Emerging Markets Quarterly, 1-17.
  • Hoe, L. W., Hafizah, J. S. & Zaidi, I. (2010). An empirical comparison of different risk measures in portfolio optimization. Business and Economic Horizons, 1(1), 39-45.
  • Hogan, W. W., & Warren, J. M. (1974). Toward the development of an equilibrium capital-market model based on semivariance. Journal of Financial and Quantitative Analysis, 9(1), 1-11.
  • İskenderoğlu, Ö., & Karadeniz, E. (2011). Optimum portföyün seçimi: İMKB 30 üzerinde bir uygulama. Çukurova Üniversitesi İktisadi ve İdari Bilimler Dergisi, 12(2), 235-257.
  • Jaaman, S. H., Hoe, L., & Zaidi, I. (2011). Different downside risk approaches in portfolio optimisation. Journal of Quality Measurement and Analysis, 7(1), 77-84.
  • Kahraman, S. R. (2019). Yarı varyans modeli ile portföy optimizasyonu: BİST-100 endeksi üzerinde bir uygulama, (Yayımlanmamış doktora tezi). Afyon Kocatepe Üniversitesi Sosyal Bilimler Enstitüsü, Afyon.
  • Kardiyen, F. (2008). Portföy optimizasyonunda ortalama mutlak sapma modeli ve Markowitz modelinin kullanımı ve İMKB verilerine uygulanması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(2), 335-350.
  • Korkmaz, T., Çevik, E. İ., & Gökhan, S. (2012). İMKB'deki risklerin aşağı yönlü sermaye varlıklarını fiyatlandırma modeli ile test edilmesi. Sermaye Piyasası Dergisi (9), 15-33.
  • Kroencka, T. A., & Schindler, F. (1994). Downside risk optimization in securitized real estate markets. ZEW Centre for European Economic Research, 10-34.
  • Markowitz, H. (1952). Portfolio selection. The Journal Of Finance, 7(1), 77-91.
  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: John Wiley & Sons.
  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768-783.
  • Pala, O. & Aksaraylı, M. (2019). Nicelik kısıtlı ortalama varyans çarpıklık basıklık portföy modeli: Bulanık sezgisel bir yaklaşım. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD), 11 (21), 386-397.
  • Rani, A. (2012). The modern portfolio theory as an investment decision tool. International Journal of Management Research and Reviews, 7(2), 1164-1172.
  • Rom, B. M., & Ferguson, K. W. (1994). Post-modern portfolio theory comes of age. Paper Presented At The Proceedings 4th AFIR International Colloquium.
  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431-449.
  • Sharpe, W.F. (1964). Capital asset prices: A theroy of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.
  • Sumnicht, V. (2008). Practical applications of post-modern portfolio theory. Paper of Sumnicht & Assocoates LLC.
  • Swisher, P., & Kasten, G. W. (2005). Post-modern portfolio theory. Journal of Financial Planning Association, 18(9), 74.
  • TDK.15 Mart 2021 tarihinde TDK: https://sozluk.gov.tr/ adresinden erişildi.
  • Tsai, H. J., Chen, M. C., & Yang, C. Y. (2014). A time-varying perspective on the capm and downside betas. International Review of Economics and Finance, 29, 440-454.
  • Tuna, G., & Tuna, V. E. (2013). İstanbul Menkul Kıymetler Borsası’nda sistematik risk: Geleneksel beta katsayısına karşı aşağı yönlü beta katsayısı. İşletme Araştırmaları Dergisi, 5(1), 189-205.
  • Wikipedia. 18 Mayıs, 2021 tarihinde https://tr.wikipedia.org/wiki/Borsa_%C4%B0stanbul adresinden erişildi.
  • Yıldız, M. E., & Erzurumlu, Y. O. (2018). Testing postmodern portfolio theory based on global and local single factor model: Borsa Istanbul case. Borsa Istanbul Review, 18(4), 259-268.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Fikret Bayat 0000-0002-1315-0118

Şule Yüksel Yiğiter 0000-0003-3230-5784

Publication Date June 29, 2022
Acceptance Date December 26, 2021
Published in Issue Year 2022 Volume: 13 Issue: 25

Cite

APA Bayat, F., & Yiğiter, Ş. Y. (2022). AŞAĞI YÖNLÜ RİSK ÖLÇÜTLERİ VE MODERN PORTFÖY TEORİSİNİN KARŞILAŞTIRILMASI: BORSA İSTANBUL ÖRNEĞİ. Kafkas Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 13(25), 1-23. https://doi.org/10.36543/kauiibfd.2022.001

KAUJEASF is the corporate journal of Kafkas University, Faculty of Economics and Administrative Sciences Journal Publishing.

KAUJEASF has been included in Web of Science since 2022 and started to be indexed in the Emerging Sources Citation Index (ESCI ), a Clarivate product.

2025 June issue article acceptance and evaluations are ongoing.