Research Article
BibTex RIS Cite

İstanbul'daki Airbnb Misafir Deneyimlerini Ne Şekillendiriyor: Konu Modellemesi Yoluyla İçgörüler

Year 2024, Volume: 17 Issue: 2, 393 - 410, 17.03.2024
https://doi.org/10.35674/kent.1396279

Abstract

Bu çalışma, özellikle Airbnb'ye odaklanarak, İstanbul'un hızla gelişen konaklama paylaşım ekonomisinde müşteri deneyimini ve memnuniyetini etkileyen çeşitli faktörleri kapsamlı bir şekilde incelemek için endüktif bir yaklaşım benimsemektedir. Araştırma içerisinde, bu alandaki müşteri tercihleri ve beklentilerinin inceliklerini anlamaya yönelik önemli bir çaba ile birlikte, İstanbul'dan toplanan 508.746 Airbnb yorumu üzerinden geniş bir veri setinin kapsamlı bir analizi gerçekleştirilmiştir. Analiz edilen bilgilerin açıklığı ve ilgililiğini sağlamak üzere metinsel verilerin kapsamlı bir ön işlemesinden başlanmıştır. Bunun ardından, çalışma, kullanıcı tarafından üretilen içerikten 32 ayrı konuyu tespit etmek ve çıkarmak için sofistike bir istatistiksel model olan Latent Dirichlet Allocation (LDA) yöntemini kullanmaktadır. Bu konular, incelemelere gömülü olarak, konuk deneyimi hakkında zengin bilgiler sağlamaktadır. Bu sayede ortaya çıkarılan konular, analiz için yapılandırılmış bir çerçeve ile birkaç ana boyuta sistematik olarak kategorize edilmiştir. Bu boyutlar, konuklar tarafından yapılan detaylı değerlendirmeleri, konaklama yerlerinin merkezi kentsel alanlardan daha çevresel yerlere kadar uzanan konum özelliklerini ve Airbnb listelerinin hem somut hem de soyut yönlerini içermektedir. Ek olarak, çalışma, konuk memnuniyetini şekillendirmede kritik faktörler olan ev sahiplerinin yönetim uygulamalarını ve genel hizmet kalitesini incelemektedir. Bu boyutların her biri, paylaşımlı konaklama sektöründeki müşteri deneyiminin karmaşık yönlerini anlamak ve değerlendirmek için birer araç olarak işlev görmektedir. Bu konular arasındaki karmaşık ilişkileri daha derinlemesine keşfetmek için çalışma, çeşitli konular arasındaki karmaşık etkileşimi ve ince bağlantıları ortaya çıkaran istatistiksel bir teknik olan hiyerarşik Ward Kümeleme yöntemini kullanılmıştır. Bu yaklaşım, yorumlar arası konaklama bağlamında müşteri deneyiminin çok yönlü doğasını aydınlatmakta hayati bir rol oynamaktadır. Bu analiz sonuçları, İstanbul'un Airbnb sektöründeki misafir deneyimlerini şekillendiren belirleyiciler hakkında kapsamlı ve katmanlı bir anlayış sağlamayı hedeflemektedir. Müşteri memnuniyetinin etkin faktörlerine ilişkin ayrıntılı ve çok yönlü bir bakış açısı sunarak, İstanbul'un konaklama paylaşım ekonomisinin dinamik ve çeşitli manzarasında misafir deneyimlerini ve memnuniyetini etkileyen ana faktörlerin anlaşılmasını geliştiren ve bu alandaki bilgi birikimine önemli bir katkıda bulunmaktadır.

References

  • Brunetti, F., Matt, D. T., Bonfanti, A., De Longhi, A., Pedrini, G., & Orzes, G. (2020). Digital transformation challenges: strategies emerging from a multi-stakeholder approach. The TQM Journal, 32(4), 697-724.
  • Chen, Y., & Bellavitis, C. (2020). Blockchain disruption and decentralized finance: The rise of decentralized business models. Journal of Business Venturing Insights, 13, e00151.
  • Cromley, E. (2004). Domestic Space Transformed, 1850–2000. Architectures: Modernism and After, 163-201.
  • Ding, K., Choo, W. C., Ng, K. Y., Ng, S. I., & Song, P. (2021). Exploring sources of satisfaction and dissatisfaction in Airbnb accommodation using unsupervised and supervised topic modeling. Frontiers in psychology, 12, 659481.
  • Enz, C. A., Canina, L., & Liu, Z. (2008). Competitive dynamics and pricing behavior in US hotels: the role of co‐location. Scandinavian Journal of Hospitality and Tourism, 8(3), 230-250.
  • Guest, D. (2002). Human resource management, corporate performance and employee wellbeing: Building the worker into HRM. The journal of industrial relations, 44(3), 335-358.
  • Gunter, U. (2018). What makes an Airbnb host a superhost? Empirical evidence from San Francisco and the Bay Area. Tourism Management, 66, 26-37.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl_1), 5228-5235.
  • Hong, T. H., Niu, H., Ren, G., & Park, J. Y. (2018). Multi-Topic Sentiment Analysis using LDA for Online Review. The Journal of Information Systems, 27(1), 89-110.
  • Hwang, S. Y., Lai, C. Y., Jiang, J. J., & Chang, S. (2014). The identification of noteworthy hotel reviews for hotel management. Pacific Asia Journal of the Association for Information Systems, 6(4), 1.
  • Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78, 15169-15211.
  • Kar, A. K., Kumar, S., & Ilavarasan, P. V. (2021). Modelling the service experience encounters using user-generated content: A text mining approach. Global Journal of Flexible Systems Management, 22(4), 267-288.
  • Lee, C. K. H., Tse, Y. K., Zhang, M., & Wang, Y. (2023). What have hosts overlooked for improving stay experience in accommodation-sharing? Empirical evidence from Airbnb customer reviews. International Journal of Contemporary Hospitality Management, 35(2), 765-784.
  • Liu, X. (2020). Analyzing the impact of user-generated content on B2B Firms' stock erformance: Big data analysis with machine learning methods. Industrial marketing management, 86, 30-39.
  • Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of environmental management, 90(1), 652-659.
  • Mušanović, J., & Dorčić, J. (2023). Topic modelling of Croatian five-star hotel brands posts on Facebook using Latent Dirichlet Allocation. ECONOMICS AND BUSINESS OF THE POST COVID-19 WORLD, 161.
  • Naldi, M. C., Campello, R. J., Hruschka, E. R., & Carvalho, A. C. P. L. F. (2011). Efficiency issues of evolutionary k-means. Applied Soft Computing, 11(2), 1938-1952.
  • Prentice, C., & Pawlicz, A. (2024). Addressing data quality in Airbnb research. International Journal of Contemporary Hospitality Management, 36(3), 812-832.
  • Subroyen, J., Turpin, M., de Waal, A., & Van Belle, J. P. (2023). Topic Analysis and Visualisation of Peer-to-Peer Platform Data: An Airbnb Case Study. In Computational Intelligence: Select Proceedings of InCITe 2022 (pp. 157-166). Singapore: Springer Nature Singapore.
  • Supply, P., Allix, C., Lesjean, S., Cardoso-Oelemann, M., Rüsch-Gerdes, S., Willery, E., ... & van Soolingen, D. (2006). Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. Journal of clinical microbiology, 44(12), 4498-4510.
  • Sutherland, I., Sim, Y., Lee, S. K., Byun, J., & Kiatkawsin, K. (2020). Topic modeling of online accommodation reviews via latent dirichlet allocation. Sustainability, 12(5), 1821.
  • Turnsek, M., & Ladkin, A. (2024). The Algorithmic Management: Reflecting on the Practices of Airbnb. In Human Relations Management in Tourism (pp. 57-81). IGI Global.
  • O’Hern, M. S., & Kahle, L. R. (2013). The empowered customer: User-generated content and the future of marketing. Global Economics and Management Review, 18(1), 22-30.
  • Orellana, K. (2023). Short stop, Long Memories in Helsinki: Crafting guided tours for cruise ship travelers with a short layover.
  • Wilson, A., Murphy, H., & Fierro, J. C. (2012). Hospitality and travel: The nature and implications of user-generated content. Cornell hospitality quarterly, 53(3), 220-228.
  • Zhang, X., Yu, Y., Li, H., & Lin, Z. (2016). Sentimental interplay between structured and unstructured user-generated contents: an empirical study on online hotel reviews. Online Information Review, 40(1), 119-145.

Exploring What Shapes Guest Experiences in Istanbul's Airbnb: Insights from Topic Modeling

Year 2024, Volume: 17 Issue: 2, 393 - 410, 17.03.2024
https://doi.org/10.35674/kent.1396279

Abstract

This study adopts an inductive approach to comprehensively examine the various factors influencing customer experience and satisfaction within Istanbul's rapidly evolving accommodation-sharing economy, with a particular focus on Airbnb. The research involves an extensive analysis of a large dataset comprising 508,746 Airbnb reviews collected from Istanbul, marking a significant endeavor in understanding the nuances of customer preferences and expectations in this domain. The process begins with a thorough preprocessing of the textual data to ensure clarity and relevance in the information analyzed. Following this, the study employs Latent Dirichlet Allocation (LDA), a sophisticated statistical model, to identify and extract 32 distinct topics from the user-generated content. These topics, embedded within the reviews, provide a rich source of insights into the guest experience. The extracted topics are systematically categorized into several key dimensions, offering a structured framework for analysis. These dimensions include detailed assessments made by guests, locational attributes of the accommodations ranging from central urban areas to more peripheral locations, and both the tangible and intangible aspects of the Airbnb listings. Additionally, the study examines the management practices of the hosts and the overall quality of service, factors that are crucial in shaping guest satisfaction. Each of these dimensions serves as a lens through which the intricate aspects of customer experience in the shared accommodation sector can be understood and evaluated. To explore deeper into the intricate relationships among these topics, the study employs hierarchical Ward Clustering. This statistical technique is instrumental in revealing the complex interplay and subtle connections between the various topics, playing a vital role in elucidating the multifaceted nature of customer experience in the peer-to-peer accommodation context. The analysis aims to provide a comprehensive and layered understanding of the determinants that shape guest experiences in Istanbul's Airbnb sector. By offering a detailed, multi-faceted perspective on the drivers of customer satisfaction, this study significantly contributes to the body of knowledge in the field, enhancing the understanding of key factors that influence guest experiences and satisfaction in the dynamic and diverse landscape of Istanbul's accommodation-sharing economy.

References

  • Brunetti, F., Matt, D. T., Bonfanti, A., De Longhi, A., Pedrini, G., & Orzes, G. (2020). Digital transformation challenges: strategies emerging from a multi-stakeholder approach. The TQM Journal, 32(4), 697-724.
  • Chen, Y., & Bellavitis, C. (2020). Blockchain disruption and decentralized finance: The rise of decentralized business models. Journal of Business Venturing Insights, 13, e00151.
  • Cromley, E. (2004). Domestic Space Transformed, 1850–2000. Architectures: Modernism and After, 163-201.
  • Ding, K., Choo, W. C., Ng, K. Y., Ng, S. I., & Song, P. (2021). Exploring sources of satisfaction and dissatisfaction in Airbnb accommodation using unsupervised and supervised topic modeling. Frontiers in psychology, 12, 659481.
  • Enz, C. A., Canina, L., & Liu, Z. (2008). Competitive dynamics and pricing behavior in US hotels: the role of co‐location. Scandinavian Journal of Hospitality and Tourism, 8(3), 230-250.
  • Guest, D. (2002). Human resource management, corporate performance and employee wellbeing: Building the worker into HRM. The journal of industrial relations, 44(3), 335-358.
  • Gunter, U. (2018). What makes an Airbnb host a superhost? Empirical evidence from San Francisco and the Bay Area. Tourism Management, 66, 26-37.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl_1), 5228-5235.
  • Hong, T. H., Niu, H., Ren, G., & Park, J. Y. (2018). Multi-Topic Sentiment Analysis using LDA for Online Review. The Journal of Information Systems, 27(1), 89-110.
  • Hwang, S. Y., Lai, C. Y., Jiang, J. J., & Chang, S. (2014). The identification of noteworthy hotel reviews for hotel management. Pacific Asia Journal of the Association for Information Systems, 6(4), 1.
  • Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78, 15169-15211.
  • Kar, A. K., Kumar, S., & Ilavarasan, P. V. (2021). Modelling the service experience encounters using user-generated content: A text mining approach. Global Journal of Flexible Systems Management, 22(4), 267-288.
  • Lee, C. K. H., Tse, Y. K., Zhang, M., & Wang, Y. (2023). What have hosts overlooked for improving stay experience in accommodation-sharing? Empirical evidence from Airbnb customer reviews. International Journal of Contemporary Hospitality Management, 35(2), 765-784.
  • Liu, X. (2020). Analyzing the impact of user-generated content on B2B Firms' stock erformance: Big data analysis with machine learning methods. Industrial marketing management, 86, 30-39.
  • Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of environmental management, 90(1), 652-659.
  • Mušanović, J., & Dorčić, J. (2023). Topic modelling of Croatian five-star hotel brands posts on Facebook using Latent Dirichlet Allocation. ECONOMICS AND BUSINESS OF THE POST COVID-19 WORLD, 161.
  • Naldi, M. C., Campello, R. J., Hruschka, E. R., & Carvalho, A. C. P. L. F. (2011). Efficiency issues of evolutionary k-means. Applied Soft Computing, 11(2), 1938-1952.
  • Prentice, C., & Pawlicz, A. (2024). Addressing data quality in Airbnb research. International Journal of Contemporary Hospitality Management, 36(3), 812-832.
  • Subroyen, J., Turpin, M., de Waal, A., & Van Belle, J. P. (2023). Topic Analysis and Visualisation of Peer-to-Peer Platform Data: An Airbnb Case Study. In Computational Intelligence: Select Proceedings of InCITe 2022 (pp. 157-166). Singapore: Springer Nature Singapore.
  • Supply, P., Allix, C., Lesjean, S., Cardoso-Oelemann, M., Rüsch-Gerdes, S., Willery, E., ... & van Soolingen, D. (2006). Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. Journal of clinical microbiology, 44(12), 4498-4510.
  • Sutherland, I., Sim, Y., Lee, S. K., Byun, J., & Kiatkawsin, K. (2020). Topic modeling of online accommodation reviews via latent dirichlet allocation. Sustainability, 12(5), 1821.
  • Turnsek, M., & Ladkin, A. (2024). The Algorithmic Management: Reflecting on the Practices of Airbnb. In Human Relations Management in Tourism (pp. 57-81). IGI Global.
  • O’Hern, M. S., & Kahle, L. R. (2013). The empowered customer: User-generated content and the future of marketing. Global Economics and Management Review, 18(1), 22-30.
  • Orellana, K. (2023). Short stop, Long Memories in Helsinki: Crafting guided tours for cruise ship travelers with a short layover.
  • Wilson, A., Murphy, H., & Fierro, J. C. (2012). Hospitality and travel: The nature and implications of user-generated content. Cornell hospitality quarterly, 53(3), 220-228.
  • Zhang, X., Yu, Y., Li, H., & Lin, Z. (2016). Sentimental interplay between structured and unstructured user-generated contents: an empirical study on online hotel reviews. Online Information Review, 40(1), 119-145.
There are 26 citations in total.

Details

Primary Language English
Subjects Tourism Policy, Urban Sociology and Community Studies, Tourism (Other)
Journal Section All Articles
Authors

Yavuz Selim Balcıoğlu 0000-0001-7138-2972

Publication Date March 17, 2024
Submission Date November 26, 2023
Acceptance Date March 5, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Balcıoğlu, Y. S. (2024). Exploring What Shapes Guest Experiences in Istanbul’s Airbnb: Insights from Topic Modeling. Kent Akademisi, 17(2), 393-410. https://doi.org/10.35674/kent.1396279

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi
Information, Communication, Culture, Art and Media Services (ICAM Network) | www.icamnetwork.net
Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net