Research Article
BibTex RIS Cite

Gerçek Bir İnsan Kaynaklı Felaketin Sonlu Elemanlar Analizi

Year 2024, Volume: 20 Issue: 2, 223 - 236, 01.11.2024
https://doi.org/10.17134/khosbd.1328695

Abstract

Patlama ve patlamanın diğer cisimler üzerinde oluşturduğu etkilerin analiz edilebilmesi amacıyla birçok yazılım kullanılmaktadır. Bu yazılımların başında da ANSYS Autodyn yazılımı gelmektedir. Bu çalışmada, Suriye'nin Han Şeyhun şehrinde 4 Nisan 2017 tarihinde gerçekleşen gerçek bir kimyasal silah saldırı olayı, Sonlu elemanlar yöntemi kullanılarak ANSYS Autodyn yazılımı ile simüle edilmiştir. Yazılım, bombalama olayından sonra oluşan, sınır koşulları (mühimmatın türü ve özellikleri, zeminin özellikleri, mühimmatın hızı ve düşme yüksekliği) ve verileri bilinen kraterin, bu çarpışma ve patlama sonucunda oluşup oluşmayacağını analiz edebilmek için kullanılmıştır. Çalışmanın bulgularına baktığımızda, yapılan 6 farklı simülasyonun sonunda, özellikle de altıncı simülasyon sonucunda krater çapının %97 oranında krater derinliğinin ise %92,4 oranında gerçek değerlere yakınsadığı görülmektedir. Bu da söz konusu mühimmatın bu olayda kullanıldığı varsayımını güçlendirmektedir.

Project Number

Herhangi bir proje kapsamında yapılmamıştır.

References

  • [1] M. Frulli, “International Law and Chemical, Biological, RadioNuclear (CBRN) Events. Guttry A. (Ed)”, The Challenge of Outlining the CBRN Definitional Framework, pp.3-14, Brill Nijhoff, 2022.
  • [2] H. Farhat, G. Alinier, P. Gangaram, et al. “Exploring pre‐hospital healthcare workers' readiness for chemical, biological, radiological, and nuclear threats in the State of Qatar: A cross‐ sectional study”, Health Science Reports, 5(5): e803, 2022. https://doi.org/10.1002/hsr2.803.
  • [3] A. P. M. F. Pereira, “CBRN events management and the use of the Hysplit model: an integrative literature review”, Journal of Saúde em Debate, 43(122), 925-938, 2019.
  • [4] Chemical Weapon Convention (1993) https://www.opcw.org/chemical-weaponsconvention (10.07.2023).
  • [5] S. Jacobs, “Chemical warfare, from Rome to Syria: a timeline. National Geographic (August 22)” http;//bit.ly/1rBjDgu (22.09.2024).
  • [6] J. T. Thurman, “Practical bomb scene investigation. Boca Raton” CRC Press, 2017.
  • [7] S. Shlyk. “Research of ANSYS Autodyn capabilities in evaluating the landmine blast resistance of specialized armored vehicles.”, Technology Audit and Production Reserves. 3(1(59), 6-15, 2021. doi:10.15587/2706-5448.2021.235397
  • [8] N. Jha, B. S. K. Kumar, “Air blast validation using ANSYS/AUTODYN”, Issue 1, Vol. 3, International Journal of Engineering Research and Technology, pp. 1794-1797, 2014.
  • [9] H. Witschi, “Fritz Haber: 1868–1934”. Toxicological Sciences, 55: 1–2, 2000.
  • [10] D. Charles, “Master Mind”. Harper Collins Publishers. pp. 154–157, 2005.
  • [11] G. Chapman, H. Elbahtimy, & S. B. Martin, “The future of chemical weapons: Implications from the Syrian civil war”, Security Studies, 27(4), 704-733. 2018. https://doi.org/10.1080/09636412.2018.1483640 . [12] T. Schneider, & T. Lütkefend, “Nowhere to Hide. The Logic of Chemical Weapons Use in Syria”, Global Public Policy Insitute. 2019.
  • [13] J. Zarocostas, “Syria chemical attacks: preparing for the unconscionable”. The Lancet, 389(10078), 2017. doi:10.1016/s0140- 6736(17)30997-2.
  • [14] M. Şahin, C. Dereli, "Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology". Politeknik Dergisi, 25, 1799-1808, 2022. https://doi.org/10.2339/politeknik.1109423.
  • [15] United Nations Human Rights Council, “Independent International Commission of Inquiry on the Syrian Arab Republic Report”. Report No: A/HRC/36/55, 8 August 2017
  • [16] Organization for the Prohibition of Chemical Weapons. “Report Of The OPCW FactFinding Mission In Syria Regarding An Alleged Incident In Khan Shaykhun”. Syrian Arab Republic Aprıl 2017, Report No: S/1510/2017, 29 June 2017. The Hague, 2017.
  • [17] Organization for the Prohibition of Chemical Weapons, “Report on Letter dated 26 October 2017 from the Leadership Panel of the Organisation for the Prohibition of Chemical Weapons-United Nations Joint Investigative Mechanism addressed to the Secretary-General”, Report No: S/2017/904, 26 October 2017. The Hague, 2017.
  • [18] United Nation Security Council, “Report on Letter dated 9 November 2017 from the Chargé d’affaires a.i. of the Permanent Mission of the Russian Federation to the United Nations addressed to the Secretary-General”, Report No: A/72/615–S/2017/938, 5 January 2018.
  • [19] Forensic Architecture, (2022, 10 September) https://forensicarchitecture.org/investigation/chemical-attackinkhan-sheikhoun 2017 (22.09.2024).
  • [20] Organization for the Prohibition of Chemical Weapons, “Investigation and Identification Team Report on Ltamenah (Syrian Arab Republic), Report No: S/1867/2020”, 8 April 2020. The Hague, 2020
  • [21] M. Y. H. Bangash, “Shock, Impact and Explosion Structural Analysis and Design”. pp.1079-1098, Springer Berlin, 2009.
  • [22] C. M. Tarver, “Detonation Reaction Zones in Condensed Explosives”, 14th APS Topical Conference on SCCM, Baltimore, USA, 2005,
  • [23] United Nations Security Council. 8090th meeting 7 November 2017. (S/PV.8090). Retrieved from https://undocs.org/en/s/pv.8090(22.09.2024).
  • [24] C. Goong, G. Cong, A. P. Theodore, et al.“Computational Forensics for the Alleged Syrian Sarin Chemical Attack on April 4, 2017: What Actually Happened?”, Global Journal of Forensic Science & Medicine., 2(2), 2020. doi: 10.33552/GJSFM.2020.02.000532

Finite Element Analysis Of a Real Man-made Disaster

Year 2024, Volume: 20 Issue: 2, 223 - 236, 01.11.2024
https://doi.org/10.17134/khosbd.1328695

Abstract

Many software is used to analyse the effects of an explosion and its impact on other objects. ANSYS Autodyn is one such software. In this study, a real chemical weapons attack event that took place in Khan Sheikhoun, Syria on 4 April 2017 was simulated using ANSYS Autodyn software using the finite element method. The software was used to analyse whether the crater formed after the bombing event, whose boundary conditions (type and properties of the munition, properties of the ground, velocity of the munition and height of fall) and data are known, will be formed as a result of this collision and explosion. Looking at the results of the study, it can be seen that at the end of 6 different simulations, and especially as a result of the sixth simulation, the crater diameter converged to the real values by 97% and the crater depth by 92.4%. This strengthens the assumption that the ammunition in question was used in this incident.

Supporting Institution

Destekleyen Kurum Bulunmamaktadır.

Project Number

Herhangi bir proje kapsamında yapılmamıştır.

Thanks

-

References

  • [1] M. Frulli, “International Law and Chemical, Biological, RadioNuclear (CBRN) Events. Guttry A. (Ed)”, The Challenge of Outlining the CBRN Definitional Framework, pp.3-14, Brill Nijhoff, 2022.
  • [2] H. Farhat, G. Alinier, P. Gangaram, et al. “Exploring pre‐hospital healthcare workers' readiness for chemical, biological, radiological, and nuclear threats in the State of Qatar: A cross‐ sectional study”, Health Science Reports, 5(5): e803, 2022. https://doi.org/10.1002/hsr2.803.
  • [3] A. P. M. F. Pereira, “CBRN events management and the use of the Hysplit model: an integrative literature review”, Journal of Saúde em Debate, 43(122), 925-938, 2019.
  • [4] Chemical Weapon Convention (1993) https://www.opcw.org/chemical-weaponsconvention (10.07.2023).
  • [5] S. Jacobs, “Chemical warfare, from Rome to Syria: a timeline. National Geographic (August 22)” http;//bit.ly/1rBjDgu (22.09.2024).
  • [6] J. T. Thurman, “Practical bomb scene investigation. Boca Raton” CRC Press, 2017.
  • [7] S. Shlyk. “Research of ANSYS Autodyn capabilities in evaluating the landmine blast resistance of specialized armored vehicles.”, Technology Audit and Production Reserves. 3(1(59), 6-15, 2021. doi:10.15587/2706-5448.2021.235397
  • [8] N. Jha, B. S. K. Kumar, “Air blast validation using ANSYS/AUTODYN”, Issue 1, Vol. 3, International Journal of Engineering Research and Technology, pp. 1794-1797, 2014.
  • [9] H. Witschi, “Fritz Haber: 1868–1934”. Toxicological Sciences, 55: 1–2, 2000.
  • [10] D. Charles, “Master Mind”. Harper Collins Publishers. pp. 154–157, 2005.
  • [11] G. Chapman, H. Elbahtimy, & S. B. Martin, “The future of chemical weapons: Implications from the Syrian civil war”, Security Studies, 27(4), 704-733. 2018. https://doi.org/10.1080/09636412.2018.1483640 . [12] T. Schneider, & T. Lütkefend, “Nowhere to Hide. The Logic of Chemical Weapons Use in Syria”, Global Public Policy Insitute. 2019.
  • [13] J. Zarocostas, “Syria chemical attacks: preparing for the unconscionable”. The Lancet, 389(10078), 2017. doi:10.1016/s0140- 6736(17)30997-2.
  • [14] M. Şahin, C. Dereli, "Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology". Politeknik Dergisi, 25, 1799-1808, 2022. https://doi.org/10.2339/politeknik.1109423.
  • [15] United Nations Human Rights Council, “Independent International Commission of Inquiry on the Syrian Arab Republic Report”. Report No: A/HRC/36/55, 8 August 2017
  • [16] Organization for the Prohibition of Chemical Weapons. “Report Of The OPCW FactFinding Mission In Syria Regarding An Alleged Incident In Khan Shaykhun”. Syrian Arab Republic Aprıl 2017, Report No: S/1510/2017, 29 June 2017. The Hague, 2017.
  • [17] Organization for the Prohibition of Chemical Weapons, “Report on Letter dated 26 October 2017 from the Leadership Panel of the Organisation for the Prohibition of Chemical Weapons-United Nations Joint Investigative Mechanism addressed to the Secretary-General”, Report No: S/2017/904, 26 October 2017. The Hague, 2017.
  • [18] United Nation Security Council, “Report on Letter dated 9 November 2017 from the Chargé d’affaires a.i. of the Permanent Mission of the Russian Federation to the United Nations addressed to the Secretary-General”, Report No: A/72/615–S/2017/938, 5 January 2018.
  • [19] Forensic Architecture, (2022, 10 September) https://forensicarchitecture.org/investigation/chemical-attackinkhan-sheikhoun 2017 (22.09.2024).
  • [20] Organization for the Prohibition of Chemical Weapons, “Investigation and Identification Team Report on Ltamenah (Syrian Arab Republic), Report No: S/1867/2020”, 8 April 2020. The Hague, 2020
  • [21] M. Y. H. Bangash, “Shock, Impact and Explosion Structural Analysis and Design”. pp.1079-1098, Springer Berlin, 2009.
  • [22] C. M. Tarver, “Detonation Reaction Zones in Condensed Explosives”, 14th APS Topical Conference on SCCM, Baltimore, USA, 2005,
  • [23] United Nations Security Council. 8090th meeting 7 November 2017. (S/PV.8090). Retrieved from https://undocs.org/en/s/pv.8090(22.09.2024).
  • [24] C. Goong, G. Cong, A. P. Theodore, et al.“Computational Forensics for the Alleged Syrian Sarin Chemical Attack on April 4, 2017: What Actually Happened?”, Global Journal of Forensic Science & Medicine., 2(2), 2020. doi: 10.33552/GJSFM.2020.02.000532
There are 23 citations in total.

Details

Primary Language English
Subjects Defence Studies, Numerical Modelling and Mechanical Characterisation
Journal Section Articles
Authors

Caner Dereli 0000-0001-9939-5783

Murat Şahin 0000-0003-1478-3221

Project Number Herhangi bir proje kapsamında yapılmamıştır.
Publication Date November 1, 2024
Submission Date July 18, 2023
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

IEEE C. Dereli and M. Şahin, “Finite Element Analysis Of a Real Man-made Disaster”, Savunma Bilimleri Dergisi, vol. 20, no. 2, pp. 223–236, 2024, doi: 10.17134/khosbd.1328695.