Review
BibTex RIS Cite

Quantum Revision

Year 2024, Volume: 20 Issue: 2, 343 - 362, 01.11.2024
https://doi.org/10.17134/khosbd.1522517

Abstract

Quantum physics has proven that it has the capacity to serve the field of technology with the developments achieved. One of the most important of these areas is military use areas. Within NATO, strategies have been developed for cooperation between allies to make this technology a part of the future combat environment. However, there are fundamental limitations in the use of quantum technologies, such as sensitivity and infrastructure. The fact that the system operates in the subatomic dimension and its sensitivity to external factors has become a factor that limits its application in the combat environment. Secondly, the sensitivity of the systems and the difficulty of implementing them with current technology cause infrastructure problems in the installation of the systems. In order for the armed forces to adapt to such a change, they need to take different steps than the doctrine and organizational revisions they have made against past technological developments. Quantum revision is a revision concept in which the military usage areas of quantum technologies are researched in order to ensure adaptation of the armed forces and the path to be followed in changing these areas.

References

  • [1] Guderian, H. (2012). Achtung Panzer! Hachette UK. ISBN: 978-975-282-23-51
  • [2] Hossain, K. A. (2023). The potential and challenges of quantum technology in modern era. Scientific Research Journal, 11(6).
  • [3] Krelina, M. (2021). Quantum technology for military applications. EPJ Quantum Technology, 8(1). https://doi.org/10.1140/epjqt/s40507-021- 00113-y
  • [4] Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Estève, D., Gisin, N., Glaser, S. J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M. F., Schmidt, P. O., Thew, R., Wallraff, A., Walmsley, I. A., & Wilhelm, F. K. (2018). The quantum technologies roadmap: a European community view. New Journal of Physics, 20(8), 080201. https://doi.org/10.1088/1367-2630/aad1ea
  • [5] Gül, Ç. D. (2021). Quantum Technologies (Vol. 4). SETA. https://setav.org/en/assets/uploads/2023/05/R232 En.pdf
  • [6] Griffiths, D. J. (2013). Kuantum mekaniğine giriş. ISBN: 978-605-133-640-4
  • [7] Ural, M. N. (2021). Kuantum Hesaplayıcılar ve Kuantum Hesaplamaya Giriş. Kodlab yayın dağıtım yazılım LTD. ŞTİ. ISBN: 978-605-7744-41-8
  • [8] Di Vincenzo D.P. ,1995, Two-bit gates are universal for quantum computation, Phys.Rev.A, 51, 1015-1022
  • [9] Hidary, J. D. (2021). Quantum Computing: an Applied Approach. Springer. ISBN: 978-3-030- 83273
  • [10] Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43, 172–198 (1927). https://doi.org/10.1007/BF01397280
  • [11] Ho, N. (2024, January 23). Why quantum computers resemble chandeliers? pQCee Pte Ltd. https://qcve.org/blog/why-quantum-computersresemble-chandeliers
  • [12] Choi, D. (2023). Quantum Technology and the Military-Revolution or Hype?: The impact of emerging quantum technologies on future warfare. Expeditions With MCUP, 2023. https://doi.org/10.36304/expwmcup.2023.11
  • [13] Fisher, C. (2022). IBM | Quantum Computing. IBM Quantum. https://www.ibm.com/quantum-computing/
  • [14] Tanenbaum, A. S. (2021). Computer networks. Prentice Hall. Inglesant, P., Jirotka, M., & Hartswood, M. (2018). Responsible innovation in quantum technologies applied to defence and national security. NQIT (Networked Quantum Information Technologies).
  • [15] Defense primer: quantum technology. (2023). Congressional Research Service, IF11836. https://crsreports.congress.gov/product/pdf/download/IF/IF11836/IF11836.pdf/
  • [16] Chengqiang Zhao, Wenlin Gong, Mingliang Chen, Enrong Li, Hui Wang, Wendong Xu, and Shensheng Han, “Ghost Imaging Lidar via Sparsity Constraints,” Applied Physics Letters, Vol. 101, No. 14, 2012, Figure 2, p. 141123-2, used with the permission of AIP Publishing
  • [17] Sidhu, J. S., Joshi, S. K., Gündoğan, M., Brougham, T., Lowndes, D., Mazzarella, L., Krutzik, M., Mohapatra, S. R. P., Dequal, D., Vallone, G., Villoresi, P., Ling, A., Jennewein, T., Mohageg, M., Rarity, J., Fuentes, I., Pirandola, S., & Oi, D. K. L. (2021). Advances in space quantum communications. IET Quantum Communication, 2(4), 182–217. https://doi.org/10.1049/qtc2.12015
  • [18] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O' Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, et al. Large-scale silicon quantum photonics implementing arbitrary twoqubit process-ing. Nature Photonics, 12(9):534, 2018. arXiv: 1809.09791.
  • [19] Defence Science and Technology Laboratory. A perspective of UK Quantum Technology prepared by and for the UK Quantum Technology Community. 2016. Available at: http://uknqt.epsrc.ac.uk/files/ukquantumtechnolo gylandscape2016/.
  • [20] Nato. (n.d.). Summary of NATO’s quantum Technologies strategy. NATO. https://www.nato.int/cps/en/natohq/official_texts _221777.htm
  • [21] National Quantum Strategy. (2023). In https://www.gov.uk/government/publications/na tional-quantum-strategy. Department of Science, Inovation and Technology. https://assets.publishing.service.gov.uk/media/6411a602e90e0776996a4ade/national_quantum_strategy.pdf
  • [22] Zaiser, S., Rendler, T., Jakobi, I., Wolf, T., Lee, S., Wagner, S., Bergholm, V., SchulteHerbrüggen, T., Neumann, P., & Wrachtrup, J. (2016). Enhancing quantum sensing sensitivity by a quantum memory. Nature Communications, 7(1). https://doi.org/10.1038/ncomms12279
  • [23] Susskind, L., & Friedman, A. (2014). Quantum Mechanics: the theoretical minimum. Penguin UK. ISBN: 978-014-1977-81-2
  • [24] Feynman, R. P., Leighton, R. B., & Sands, M. L. (2016). Feynman fizik dersleri. ISBN: 978- 605-171-343-4 (tk)
  • [25] Pritchard, P., & (PhD) Till, S. (2014). UK Quantum Technology Landscape (DSTL/PUB75620). Defence Science and Technology Laboratory. https://www.quantumcommshub.net/wpcontent/uploads/2020/09/QuantumTechnologyL andscape.pdf
  • [26] Akıncı, E. (2007). Türk Savunma Sanayiinde Teknoloji Ve Strateji [Master Thesis, İstanbul Teknik Üniversitesi]. https://polen.itu.edu.tr/bitstreams/30f6f59a-f6c8- 4cc0-a0e0-2da1865117d5/download
  • [27] Comparison of classical and quantum cryptography using QKD simulator. (n.d.). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/document/8390120
  • [28] Havenstein, Christopher; Thomas, Damarcus; and Chandrasekaran, Swami (2018) "Comparisons of Performance between Quantum and Classical Machine Learning," SMU Data Science Review: Vol. 1: No. 4, Article 11.
  • [29] Parker, E. (2022). Commercial and military applications and timelines for quantum technology.
  • [30] Fabbri, N., De Natale, P., & Cataliotti, F. S. (2022). Quantum sensing technologies for Defence applications: the project QUANDO. Istituto Nazionale Di Ottica Consiglio Nazionale Delle Ricerche, and LENS European Laboratory. https://doi.org/10.23919/irs54158.2022.9904994
  • [31] Krelina, M. (2020). Quantum Warfare: Definitions, Overview and challenges [Czech Technical University]. https://indianstrategicknowledgeonline.com/web /2103.12548.pdf
  • [32] Wang, Y. Quantum computation and quantum information. Statistical Science, (27), (3) 2012
  • [33] Koch, C. P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S. J., Kosloff, R., Montangero, S., Schulte-Herbrüggen, T., Sugny, D., & Wilhelm, F. K. (2022). Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technology, 9(1). https://doi.org/10.1140/epjqt/s40507-022-00138-x
  • [34] Danon, J., Ali, S., Fuchs, F. G., UiO, N. L., Selstø, S., UiO, S. V., & UiO, J. W. Quantum Technology in Norway Proposal for a National Funding Strategy.
  • [35] Wawrzyniak, Z. (2023). Quantum Computıng – Challenges For The Mılıtary Needs. Elektronika, 1(8), 88–91. https://doi.org/10.15199/13.2023.8.17
  • [36] Magnuson, S. (2019). Quantum Technology: Defense Community Slow to Grasp Potential of Quantum-Based Devices. National Defense, 103(784), 20–25.

Kuantum Revizyonu

Year 2024, Volume: 20 Issue: 2, 343 - 362, 01.11.2024
https://doi.org/10.17134/khosbd.1522517

Abstract

Kuantum fiziği, elde edilen gelişmeler ile teknoloji alanına hizmet etme kapasitesi olduğunu kanıtlamıştır. Bu alanlardan en önemlilerinden birisi de askeri kullanım alanlarıdır. NATO bünyesinde de bu teknolojinin gelecek muharebe ortamının bir parçası haline gelmesi için müttefikler arasında iş birliği için stratejiler üretilmiştir. Bununla birlikte kuantum teknolojilerinin kullanımında hassasiyet ve altyapı gibi temel kısıtlar bulunmaktadır. Sistemin atom altı boyutta çalışıyor olması dış etkenlere karşı hassasiyeti muharebe ortamında uygulanmasını kısıtlayan bir etken haline gelmiştir. İkinci olarak sistemlerin hassasiyetinden ve uygulamanın güncel teknoloji ile gerçekleşmesinin güç olması sistemlerin kurulumundaki altyapı sorunun oluşmasına neden olmaktadır. Silahlı kuvvetlerin böyle bir değişime adaptasyonunu sağlaması için geçmiş teknolojik gelişmelere karşı yapmış olduğu doktrin ve teşkilat revizyonlarından farklı adımlar atması gerekmektedir. Kuantum revizyonu, silahlı kuvvetlerin adaptasyon sağlaması için kuantum teknolojilerinin askeri kullanım alanlarının araştırılarak bu alanlara karşı değişimde izlenilecek yolun araştırıldığı revizyon konseptidir.

References

  • [1] Guderian, H. (2012). Achtung Panzer! Hachette UK. ISBN: 978-975-282-23-51
  • [2] Hossain, K. A. (2023). The potential and challenges of quantum technology in modern era. Scientific Research Journal, 11(6).
  • [3] Krelina, M. (2021). Quantum technology for military applications. EPJ Quantum Technology, 8(1). https://doi.org/10.1140/epjqt/s40507-021- 00113-y
  • [4] Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Estève, D., Gisin, N., Glaser, S. J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M. F., Schmidt, P. O., Thew, R., Wallraff, A., Walmsley, I. A., & Wilhelm, F. K. (2018). The quantum technologies roadmap: a European community view. New Journal of Physics, 20(8), 080201. https://doi.org/10.1088/1367-2630/aad1ea
  • [5] Gül, Ç. D. (2021). Quantum Technologies (Vol. 4). SETA. https://setav.org/en/assets/uploads/2023/05/R232 En.pdf
  • [6] Griffiths, D. J. (2013). Kuantum mekaniğine giriş. ISBN: 978-605-133-640-4
  • [7] Ural, M. N. (2021). Kuantum Hesaplayıcılar ve Kuantum Hesaplamaya Giriş. Kodlab yayın dağıtım yazılım LTD. ŞTİ. ISBN: 978-605-7744-41-8
  • [8] Di Vincenzo D.P. ,1995, Two-bit gates are universal for quantum computation, Phys.Rev.A, 51, 1015-1022
  • [9] Hidary, J. D. (2021). Quantum Computing: an Applied Approach. Springer. ISBN: 978-3-030- 83273
  • [10] Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43, 172–198 (1927). https://doi.org/10.1007/BF01397280
  • [11] Ho, N. (2024, January 23). Why quantum computers resemble chandeliers? pQCee Pte Ltd. https://qcve.org/blog/why-quantum-computersresemble-chandeliers
  • [12] Choi, D. (2023). Quantum Technology and the Military-Revolution or Hype?: The impact of emerging quantum technologies on future warfare. Expeditions With MCUP, 2023. https://doi.org/10.36304/expwmcup.2023.11
  • [13] Fisher, C. (2022). IBM | Quantum Computing. IBM Quantum. https://www.ibm.com/quantum-computing/
  • [14] Tanenbaum, A. S. (2021). Computer networks. Prentice Hall. Inglesant, P., Jirotka, M., & Hartswood, M. (2018). Responsible innovation in quantum technologies applied to defence and national security. NQIT (Networked Quantum Information Technologies).
  • [15] Defense primer: quantum technology. (2023). Congressional Research Service, IF11836. https://crsreports.congress.gov/product/pdf/download/IF/IF11836/IF11836.pdf/
  • [16] Chengqiang Zhao, Wenlin Gong, Mingliang Chen, Enrong Li, Hui Wang, Wendong Xu, and Shensheng Han, “Ghost Imaging Lidar via Sparsity Constraints,” Applied Physics Letters, Vol. 101, No. 14, 2012, Figure 2, p. 141123-2, used with the permission of AIP Publishing
  • [17] Sidhu, J. S., Joshi, S. K., Gündoğan, M., Brougham, T., Lowndes, D., Mazzarella, L., Krutzik, M., Mohapatra, S. R. P., Dequal, D., Vallone, G., Villoresi, P., Ling, A., Jennewein, T., Mohageg, M., Rarity, J., Fuentes, I., Pirandola, S., & Oi, D. K. L. (2021). Advances in space quantum communications. IET Quantum Communication, 2(4), 182–217. https://doi.org/10.1049/qtc2.12015
  • [18] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O' Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, et al. Large-scale silicon quantum photonics implementing arbitrary twoqubit process-ing. Nature Photonics, 12(9):534, 2018. arXiv: 1809.09791.
  • [19] Defence Science and Technology Laboratory. A perspective of UK Quantum Technology prepared by and for the UK Quantum Technology Community. 2016. Available at: http://uknqt.epsrc.ac.uk/files/ukquantumtechnolo gylandscape2016/.
  • [20] Nato. (n.d.). Summary of NATO’s quantum Technologies strategy. NATO. https://www.nato.int/cps/en/natohq/official_texts _221777.htm
  • [21] National Quantum Strategy. (2023). In https://www.gov.uk/government/publications/na tional-quantum-strategy. Department of Science, Inovation and Technology. https://assets.publishing.service.gov.uk/media/6411a602e90e0776996a4ade/national_quantum_strategy.pdf
  • [22] Zaiser, S., Rendler, T., Jakobi, I., Wolf, T., Lee, S., Wagner, S., Bergholm, V., SchulteHerbrüggen, T., Neumann, P., & Wrachtrup, J. (2016). Enhancing quantum sensing sensitivity by a quantum memory. Nature Communications, 7(1). https://doi.org/10.1038/ncomms12279
  • [23] Susskind, L., & Friedman, A. (2014). Quantum Mechanics: the theoretical minimum. Penguin UK. ISBN: 978-014-1977-81-2
  • [24] Feynman, R. P., Leighton, R. B., & Sands, M. L. (2016). Feynman fizik dersleri. ISBN: 978- 605-171-343-4 (tk)
  • [25] Pritchard, P., & (PhD) Till, S. (2014). UK Quantum Technology Landscape (DSTL/PUB75620). Defence Science and Technology Laboratory. https://www.quantumcommshub.net/wpcontent/uploads/2020/09/QuantumTechnologyL andscape.pdf
  • [26] Akıncı, E. (2007). Türk Savunma Sanayiinde Teknoloji Ve Strateji [Master Thesis, İstanbul Teknik Üniversitesi]. https://polen.itu.edu.tr/bitstreams/30f6f59a-f6c8- 4cc0-a0e0-2da1865117d5/download
  • [27] Comparison of classical and quantum cryptography using QKD simulator. (n.d.). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/document/8390120
  • [28] Havenstein, Christopher; Thomas, Damarcus; and Chandrasekaran, Swami (2018) "Comparisons of Performance between Quantum and Classical Machine Learning," SMU Data Science Review: Vol. 1: No. 4, Article 11.
  • [29] Parker, E. (2022). Commercial and military applications and timelines for quantum technology.
  • [30] Fabbri, N., De Natale, P., & Cataliotti, F. S. (2022). Quantum sensing technologies for Defence applications: the project QUANDO. Istituto Nazionale Di Ottica Consiglio Nazionale Delle Ricerche, and LENS European Laboratory. https://doi.org/10.23919/irs54158.2022.9904994
  • [31] Krelina, M. (2020). Quantum Warfare: Definitions, Overview and challenges [Czech Technical University]. https://indianstrategicknowledgeonline.com/web /2103.12548.pdf
  • [32] Wang, Y. Quantum computation and quantum information. Statistical Science, (27), (3) 2012
  • [33] Koch, C. P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S. J., Kosloff, R., Montangero, S., Schulte-Herbrüggen, T., Sugny, D., & Wilhelm, F. K. (2022). Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technology, 9(1). https://doi.org/10.1140/epjqt/s40507-022-00138-x
  • [34] Danon, J., Ali, S., Fuchs, F. G., UiO, N. L., Selstø, S., UiO, S. V., & UiO, J. W. Quantum Technology in Norway Proposal for a National Funding Strategy.
  • [35] Wawrzyniak, Z. (2023). Quantum Computıng – Challenges For The Mılıtary Needs. Elektronika, 1(8), 88–91. https://doi.org/10.15199/13.2023.8.17
  • [36] Magnuson, S. (2019). Quantum Technology: Defense Community Slow to Grasp Potential of Quantum-Based Devices. National Defense, 103(784), 20–25.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Information Systems Philosophy, Research Methods and Theory, Information Systems Organisation and Management, Cryptography, Quantum Technologies, Quantum Physics (Other)
Journal Section Articles
Authors

Furkan Akkaya 0009-0004-6866-6973

Publication Date November 1, 2024
Submission Date July 25, 2024
Acceptance Date September 25, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

IEEE F. Akkaya, “Kuantum Revizyonu”, Savunma Bilimleri Dergisi, vol. 20, no. 2, pp. 343–362, 2024, doi: 10.17134/khosbd.1522517.