Araştırma Makalesi
BibTex RIS Kaynak Göster

Neural Network Data Preprocessing: Is It Necessary For Time Series Forecasting?

Yıl 2017, Cilt: 9 Sayı: 17, 147 - 154, 27.11.2017
https://doi.org/10.20990/kilisiibfakademik.329247

Öz

Neural networks (NNs) are a commonly used method to solve the time series-forecasting problem. NNs have some advantages compared with traditional forecasting models, such as auto regressive moving average or auto regressive integrated moving average. NNs do not need to have any statistical assumption like normal distribution. However, data preprocessing, normalization, trend adjusting, seasonal adjusting, or both differencing can introduce better results in some studies. In this study, we have tried to investigate whether data preprocessing methods are useful for time series data, which contains trend, seasonality, or unit root. For this purpose, we collected the real time series data belonging to monthly or quarterly figures and used nonlinear autoregressive (NAR) and multilayer perceptron (MLP) models. Although we obtained significant differences between data preprocessing methods, the structure of MLP with differenced variable produced the worst results.

Kaynakça

  • Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: Journal of Retailing and Consumer Services, 8(3), 147–156. http://doi.org/http://dx.doi.org/10.1016/S0969-6989(00)00011-4
  • Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY: Oxford University Press.
  • Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., & Chen, B.-C. (1998). New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program. Journal of Business & Economic Statistics, 16(2), 127–152. http://doi.org/10.1080/07350015.1998.10524743
  • Ghysels, E., Granger, C. W. J., & Siklos, P. L. (1996). Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Journal of Business & Economic Statistics, 14(3), 374–386. http://doi.org/10.1080/07350015.1996.10524663
  • Gorr, W. L. (1994). Editorial: Research prospective on neural network forecasting. International Journal of Forecasting, 10(1), 1–4. http://doi.org/http://dx.doi.org/10.1016/0169-2070(94)90044-2
  • Hamzaçebi, C. (2008). Improving artificial neural networks’ performance in seasonal time series forecasting. Information Sciences, 178(23), 4550–4559. http://doi.org/http://dx.doi.org/10.1016/j.ins.2008.07.024
  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. http://doi.org/http://dx.doi.org/10.1016/0893-6080(89)90020-8
  • Hylleberg, S. (1992). Modelling seasonality (1st ed.). Oxford: Oxford University Press.
  • Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., … Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1(2), 111–153. http://doi.org/10.1002/for.3980010202
  • Nelson, M., Hill, T., Remus, W., & O’Connor, M. (1999). Time series forecasting using neural networks: should the data be deseasonalized first? Journal of Forecasting, 18(5), 359–367. http://doi.org/10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P
  • Öztemel, E. (2006). Yapay Sinir Ağları (2nd ed.). İatanbul: Papatya Yayıncılık.
  • Ripley, B. D. (1996). Pattern recognition and neural networks. http://doi.org/http://dx.doi.org/10.1017/cbo9780511812651
  • Sharda, R., & Patil, R. B. (1992). Connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing, 3(5), 317–323. http://doi.org/10.1007/BF01577272
  • Yegnanarayana, B. (2005). Artificial Neural Networks (11th ed.). New Delhi: Prentice-Hall of lndia Private Limited.
  • Zhang, G. P., & Kline, D. M. (2007). Quarterly time-series forecasting with neural networks. IEEE Transactions on Neural Networks, 18(6), 1800–1814. http://doi.org/10.1109/TNN.2007.896859
  • Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160, 501–514. http://doi.org/10.1016/j.ejor.2003.08.037

NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?

Yıl 2017, Cilt: 9 Sayı: 17, 147 - 154, 27.11.2017
https://doi.org/10.20990/kilisiibfakademik.329247

Öz



Neural
networks (NNs) are a commonly used method to solve the time series-forecasting
problem. NNs have some advantages compared with traditional forecasting models,
such as auto regressive moving average or auto regressive integrated moving
average. NNs do not need to have any statistical assumption like normal
distribution. However, data preprocessing, normalization, trend adjusting,
seasonal adjusting, or both differencing can introduce better results in some
studies. In this study, we have tried to investigate whether data preprocessing
methods are useful for time series data, which contains trend, seasonality, or
unit root. For this purpose, we collected the real time series data belonging
to monthly or quarterly figures and used nonlinear autoregressive (NAR) and
multilayer perceptron (MLP) models. Although we obtained significant
differences between data preprocessing methods, the structure of MLP with
differenced variable produced the worst results.




Kaynakça

  • Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: Journal of Retailing and Consumer Services, 8(3), 147–156. http://doi.org/http://dx.doi.org/10.1016/S0969-6989(00)00011-4
  • Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY: Oxford University Press.
  • Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., & Chen, B.-C. (1998). New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program. Journal of Business & Economic Statistics, 16(2), 127–152. http://doi.org/10.1080/07350015.1998.10524743
  • Ghysels, E., Granger, C. W. J., & Siklos, P. L. (1996). Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Journal of Business & Economic Statistics, 14(3), 374–386. http://doi.org/10.1080/07350015.1996.10524663
  • Gorr, W. L. (1994). Editorial: Research prospective on neural network forecasting. International Journal of Forecasting, 10(1), 1–4. http://doi.org/http://dx.doi.org/10.1016/0169-2070(94)90044-2
  • Hamzaçebi, C. (2008). Improving artificial neural networks’ performance in seasonal time series forecasting. Information Sciences, 178(23), 4550–4559. http://doi.org/http://dx.doi.org/10.1016/j.ins.2008.07.024
  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. http://doi.org/http://dx.doi.org/10.1016/0893-6080(89)90020-8
  • Hylleberg, S. (1992). Modelling seasonality (1st ed.). Oxford: Oxford University Press.
  • Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., … Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1(2), 111–153. http://doi.org/10.1002/for.3980010202
  • Nelson, M., Hill, T., Remus, W., & O’Connor, M. (1999). Time series forecasting using neural networks: should the data be deseasonalized first? Journal of Forecasting, 18(5), 359–367. http://doi.org/10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P
  • Öztemel, E. (2006). Yapay Sinir Ağları (2nd ed.). İatanbul: Papatya Yayıncılık.
  • Ripley, B. D. (1996). Pattern recognition and neural networks. http://doi.org/http://dx.doi.org/10.1017/cbo9780511812651
  • Sharda, R., & Patil, R. B. (1992). Connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing, 3(5), 317–323. http://doi.org/10.1007/BF01577272
  • Yegnanarayana, B. (2005). Artificial Neural Networks (11th ed.). New Delhi: Prentice-Hall of lndia Private Limited.
  • Zhang, G. P., & Kline, D. M. (2007). Quarterly time-series forecasting with neural networks. IEEE Transactions on Neural Networks, 18(6), 1800–1814. http://doi.org/10.1109/TNN.2007.896859
  • Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160, 501–514. http://doi.org/10.1016/j.ejor.2003.08.037
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Hakan Pabuçcu

Yayımlanma Tarihi 27 Kasım 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 9 Sayı: 17

Kaynak Göster

APA Pabuçcu, H. (2017). NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD), 9(17), 147-154. https://doi.org/10.20990/kilisiibfakademik.329247
AMA Pabuçcu H. NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). Kasım 2017;9(17):147-154. doi:10.20990/kilisiibfakademik.329247
Chicago Pabuçcu, Hakan. “NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?”. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD) 9, sy. 17 (Kasım 2017): 147-54. https://doi.org/10.20990/kilisiibfakademik.329247.
EndNote Pabuçcu H (01 Kasım 2017) NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 9 17 147–154.
IEEE H. Pabuçcu, “NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?”, Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD), c. 9, sy. 17, ss. 147–154, 2017, doi: 10.20990/kilisiibfakademik.329247.
ISNAD Pabuçcu, Hakan. “NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?”. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 9/17 (Kasım 2017), 147-154. https://doi.org/10.20990/kilisiibfakademik.329247.
JAMA Pabuçcu H. NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). 2017;9:147–154.
MLA Pabuçcu, Hakan. “NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?”. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD), c. 9, sy. 17, 2017, ss. 147-54, doi:10.20990/kilisiibfakademik.329247.
Vancouver Pabuçcu H. NEURAL NETWORK DATA PREPROCESSING: IS IT NECESSARY FOR TIME SERIES FORECASTING?. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). 2017;9(17):147-54.