Research Article
BibTex RIS Cite

THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY

Year 2023, , 161 - 166, 05.04.2023
https://doi.org/10.18229/kocatepetip.1016199

Abstract

OBJECTIVE: Our aim in this study was to demonstrate the effectiveness of hydroxyapatite (HA) and Boron compounds in operations using an Anterior Lumbar Interbody Fusion (ALIF).
MATERIAL AND METHODS: In the study, 18 male rabbits of New Zealand breed weighing 2.5-3 kg were used. The animals who were hospitalized on the left side underwent flank incision after surgical cleaning. Lumbar 5-6 distance was reached from the lumbar retroperitoneal region. Following anterior discectomy; ALIF was performed using PEEK (polyethylene ether ketone) cage (Group I) in the control group, PEEK cage and 50 mg/kg boron (borax pentahydrate) (Group II) in the boron group, PEEK cage and 50 mg/kg powder ProOsteon (Group III) in the HA group. The ALIF operation has been applied to all groups. Six weeks later, the animals underwent a computed tomography (CT) scan. Then the lower and upper vertebrae of the sacrificed animals at the distance at which discectomy was performed and the cage was placed were removed, separated for pathology. After being microscopically detected with buffered 10% formaldehyde overnight, the sections prepared from the sample tissues that were routinely followed were stained with hematoxin-eosin and examined histopathologically with light microscopy.
RESULTS: While the osteoclast score was 1 in 83.3% of the boron group, it was 2 in 16.6%. In the same group, the osteoblast score was found to be 1 in 50% and 2 in 50%. The osteoclast score of the HA group was 1 in 50%, 2 in 50%, while the osteoblast score was found in 50%, 1 in 2, 2 in 16.6%, and 3 in 33.4%. Higher osteoblast and osteoclast scores were observed in HA group compared to Boron and control groups. It was observed that the boron group had higher osteoblast and osteoclast scores than the control group and lower than the HA group.
CONCLUSIONS: Boron and Hydroxyapatite have been shown to form stones of the same size. Although morphologically not as much as boron, hydroxyapatite, histopathological examination showed that it formed a better amount of fusion compared to the control group. The osteoblastic activity was most common in the hydroxyapatite group.

References

  • 1. Gillman CE, Jayasuriya AC. FDA-Approved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Materials Science and Engineering: C. 2021;130:112466.
  • 2. Otsuki B, Fujibayashi S, Tanida S, Shimizu T, Murata K, Matsuda S. Possible Association of Pedicle Screw Diameter on Pseudoarthrosis Rate After Transforaminal Lumbar Interbody Fusion. World Neurosurgery. 2021;150:155-61.
  • 3. Chen YC, Kuo CH, Cheng CM, Wu JC. Recent advances in the management of cervical spondylotic myelopathy: bibliometric analysis and surgical perspectives: JNSPG 75th Anniversary Invited Review Article. Journal of Neurosurgery: Spine. 2019;31(3):299-309.
  • 4. Tatsumura M, Gamada H, Ishimoto R, et al. Prevalence of curable and pseudoarthrosis stages of adolescent lumbar spondylolysis. Journal of Rural Medicine. 2018;13(2):105-9.
  • 5. Mataliotakis G, Tsirikos AI, Mohammad S. Adult degenerative deformity: principles of sagittal balance, classification and surgical management. Orthopaedics and Trauma. 2017;31(6):370-7.
  • 6. Bolt HM, Başaran N, Duydu Y. Effects of boron compounds on human reproduction. Archives of toxicology. 2020;94(3):717-24.
  • 7. Bolt HM, Duydu Y, Başaran N, Golka K. Boron and its compounds: current biological research activities. Arch Toxicol. 2017;91:2719-22.
  • 8. Bolon B, Campagnuolo G, Feige U. Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cellular and Molecular Life Sciences. 2002; 59(9):1569-76.
  • 9. Rao PJ, Phan K, Giang G, Maharaj MM, Phan S, Mobbs RJ. Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. Journal of Spine Surgery. 2017;3(2):168.
  • 10. Choy WJ, Abi-Hanna D, Cassar LP, Hardcastle P, Phan K, Mobbs RJ. History of integral fixation for anterior lumbar interbody fusion (ALIF): The Hartshill horseshoe. World Neurosurgery. 2019;129:394-400.
  • 11. Sakkas A, Schramm A, Winter K, Wilde F. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. Journal of Cranio-Maxillofacial Surgery. 2018;46(2):312-22.
  • 12. Ranalletta M, Tanoira I, Bertona A, et al. Autologous Tricortical iliac bone graft for failed Latarjet procedures. Arthroscopy Techniques. 2019;8(3):283-9.
  • 13. Zheng Y, Wang J,Chang B, Zhang L. Clinical study on repair of metacarpal bone defects using titanium alloy implantation and autologous bone grafting. Experimental and Therapeutic Medicine. 2020;20(6):1-1.
  • 14. Schmidt AH. Autologous bone graft: Is it still the gold standard?. Injury. 2021(5252):18-22.
  • 15. Suzuki O, Shiwaku Y, Hamai R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dental materials Journal. 2020;39(2):187-99.
  • 16. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS. Effect of polymethylmethacrylate-hydroxyapatite composites on callus formation and compressive strength in goat vertebral body. Malaysian Orthopaedic Journal. 2018;12(3):6.
  • 17. Chen G, Xin B, Yin M, et al. Biomechanical analysis of a novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body: a finite element study. Journal of Orthopaedic Surgery and Research. 2019;14(1):1-9.
  • 18. Johansson P, Barkarmo S, Hawton M, Perruzi N, Kjellin P, Wennerberg A. Biomechanical, histological, and computed X‐ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of Biomedical Materials Research Part A. 2018;106(5):1440-7.
  • 19. Owen G, Dard M, Larjava H. Hydoxyapatite/beta‐tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018;106(6):2493-512.
  • 20. Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiological Research. 2017;66(3):391.
  • 21. Rondanelli M, Faliva MA, Peroni G, et al. Pivotal role of boron supplementation on bone health: a narrative review. Journal of Trace Elements in Medicine and Biology. 2020;62:126577.
  • 22. Dessordi R, Spirlandeli AL, Zamarioli A, Volpon JB, Navarro AM. Boron supplementation improves bone health of non-obese diabetic mice. Journal of Trace Elements in Medicine and Biology. 2017;39:169-75.
  • 23. Chen X, Zhao Y, Geng S, et al. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. International Journal of Nanomedicine. 2015;10:839.

TAVŞAN OMURGASINDA ANTERİOR BODY KAFES BORON UYGULAMASININ KEMİK FÜZYONUNA VE FÜZYON KALİTESİNDE ETKİSİ

Year 2023, , 161 - 166, 05.04.2023
https://doi.org/10.18229/kocatepetip.1016199

Abstract

AMAÇ: Bu çalışmadaki amacımız, Anterior Lombar Interbody Fusion (ALIF) kullanılan operasyonlarda hidroksiapatit (HA) ve Boron bileşiklerinin etkinliğini göstermektir.
GEREÇ VE YÖNTEM: Çalışmada 2.5-3 kg ağırlıkta 18 adet Yeni Zelanda ırkı erkek tavşan kullanıldı. Sol tarafa yatırılan hayvanlarda cerrahi temizlik sonrası flank kesi yapıldı. Lomber retroperitoneal bölgeden lomber 5-6 mesafesine ulaşıldı. Anterior diskektomiyi takiben; kontrol grubuna PEEK (polietilen eter keton) kafesi (Grup I), PEEK kafesi ve 50 mg/kg boron (boraks pentahidrat) (Grup II) yerleştirildi ve HA grubuna PEEK kafes ve 50 mg/kg toz ProOsteon (Grup III) kullanılarak ALIF yapıldı. ALIF operasyonu tüm gruplara uygulanmıştır. Altı hafta sonra, hayvanlara bilgisayarlı tomografi (BT) taraması yapıldı. Daha sonra sakrifiye edilen hayvanların diskektominin yapıldığı ve kafesin yerleştirildiği mesafenin alt ve üst omurları çıkarılarak patoloji için ayrıldı. Bir gece tamponlu %10 formaldehit ile mikroskobik olarak tespit edildikten sonra rutin takip edilen örnek dokulardan hazırlanan kesitler hematoksin-eozin ile boyandı ve ışık mikroskobu ile histopatolojik olarak incelendi.
BULGULAR: Bor grubunun %83.3’ ünde osteoklast skoru 1 iken %16.6’ sında 2 olarak saptandı. Aynı grupta osteoblast skoru % 50’ sinde 1, % 50’sinde 2 olarak bulundu. HA grubunun osteoklast skoru %50’ sinde 1, %50’ sinde 2 saptanırken, osteoblast skoru %50, 2’ sinde 1, %16,6’ sında 2 ve %33,4’ ünde 3 bulundu. HA grubunda Boron ve kontrol grubuna göre daha yüksek osteoblast ve osteoklast skorları gözlendi. Bor grubunda kontrol grubuna göre yüksek HA grubuna göre daha düşük osteoblast ve osteoklast skoru olduğu görüldü.
SONUÇ: Boron ve Hidroksiapatitin aynı büyüklükteki taşları oluşturduğu gösterilmiştir. Morfolojik olarak boron hidroksiapatit kadar olmasa da histopatolojik inceleme ile kontrol grubuna göre daha iyi miktarda füzyon oluşturduğu görülmüştür. Osteoblastik aktivite en sık hidroksiapatit grubunda görüldü.

References

  • 1. Gillman CE, Jayasuriya AC. FDA-Approved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Materials Science and Engineering: C. 2021;130:112466.
  • 2. Otsuki B, Fujibayashi S, Tanida S, Shimizu T, Murata K, Matsuda S. Possible Association of Pedicle Screw Diameter on Pseudoarthrosis Rate After Transforaminal Lumbar Interbody Fusion. World Neurosurgery. 2021;150:155-61.
  • 3. Chen YC, Kuo CH, Cheng CM, Wu JC. Recent advances in the management of cervical spondylotic myelopathy: bibliometric analysis and surgical perspectives: JNSPG 75th Anniversary Invited Review Article. Journal of Neurosurgery: Spine. 2019;31(3):299-309.
  • 4. Tatsumura M, Gamada H, Ishimoto R, et al. Prevalence of curable and pseudoarthrosis stages of adolescent lumbar spondylolysis. Journal of Rural Medicine. 2018;13(2):105-9.
  • 5. Mataliotakis G, Tsirikos AI, Mohammad S. Adult degenerative deformity: principles of sagittal balance, classification and surgical management. Orthopaedics and Trauma. 2017;31(6):370-7.
  • 6. Bolt HM, Başaran N, Duydu Y. Effects of boron compounds on human reproduction. Archives of toxicology. 2020;94(3):717-24.
  • 7. Bolt HM, Duydu Y, Başaran N, Golka K. Boron and its compounds: current biological research activities. Arch Toxicol. 2017;91:2719-22.
  • 8. Bolon B, Campagnuolo G, Feige U. Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cellular and Molecular Life Sciences. 2002; 59(9):1569-76.
  • 9. Rao PJ, Phan K, Giang G, Maharaj MM, Phan S, Mobbs RJ. Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. Journal of Spine Surgery. 2017;3(2):168.
  • 10. Choy WJ, Abi-Hanna D, Cassar LP, Hardcastle P, Phan K, Mobbs RJ. History of integral fixation for anterior lumbar interbody fusion (ALIF): The Hartshill horseshoe. World Neurosurgery. 2019;129:394-400.
  • 11. Sakkas A, Schramm A, Winter K, Wilde F. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. Journal of Cranio-Maxillofacial Surgery. 2018;46(2):312-22.
  • 12. Ranalletta M, Tanoira I, Bertona A, et al. Autologous Tricortical iliac bone graft for failed Latarjet procedures. Arthroscopy Techniques. 2019;8(3):283-9.
  • 13. Zheng Y, Wang J,Chang B, Zhang L. Clinical study on repair of metacarpal bone defects using titanium alloy implantation and autologous bone grafting. Experimental and Therapeutic Medicine. 2020;20(6):1-1.
  • 14. Schmidt AH. Autologous bone graft: Is it still the gold standard?. Injury. 2021(5252):18-22.
  • 15. Suzuki O, Shiwaku Y, Hamai R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dental materials Journal. 2020;39(2):187-99.
  • 16. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS. Effect of polymethylmethacrylate-hydroxyapatite composites on callus formation and compressive strength in goat vertebral body. Malaysian Orthopaedic Journal. 2018;12(3):6.
  • 17. Chen G, Xin B, Yin M, et al. Biomechanical analysis of a novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body: a finite element study. Journal of Orthopaedic Surgery and Research. 2019;14(1):1-9.
  • 18. Johansson P, Barkarmo S, Hawton M, Perruzi N, Kjellin P, Wennerberg A. Biomechanical, histological, and computed X‐ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of Biomedical Materials Research Part A. 2018;106(5):1440-7.
  • 19. Owen G, Dard M, Larjava H. Hydoxyapatite/beta‐tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018;106(6):2493-512.
  • 20. Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiological Research. 2017;66(3):391.
  • 21. Rondanelli M, Faliva MA, Peroni G, et al. Pivotal role of boron supplementation on bone health: a narrative review. Journal of Trace Elements in Medicine and Biology. 2020;62:126577.
  • 22. Dessordi R, Spirlandeli AL, Zamarioli A, Volpon JB, Navarro AM. Boron supplementation improves bone health of non-obese diabetic mice. Journal of Trace Elements in Medicine and Biology. 2017;39:169-75.
  • 23. Chen X, Zhao Y, Geng S, et al. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. International Journal of Nanomedicine. 2015;10:839.
There are 23 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Serhat Korkmaz 0000-0003-0566-3594

Hamit Selim Karabekir 0000-0003-1173-4483

Publication Date April 5, 2023
Acceptance Date May 28, 2022
Published in Issue Year 2023

Cite

APA Korkmaz, S., & Karabekir, H. S. (2023). THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY. Kocatepe Tıp Dergisi, 24(2), 161-166. https://doi.org/10.18229/kocatepetip.1016199
AMA Korkmaz S, Karabekir HS. THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY. KTD. April 2023;24(2):161-166. doi:10.18229/kocatepetip.1016199
Chicago Korkmaz, Serhat, and Hamit Selim Karabekir. “THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY”. Kocatepe Tıp Dergisi 24, no. 2 (April 2023): 161-66. https://doi.org/10.18229/kocatepetip.1016199.
EndNote Korkmaz S, Karabekir HS (April 1, 2023) THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY. Kocatepe Tıp Dergisi 24 2 161–166.
IEEE S. Korkmaz and H. S. Karabekir, “THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY”, KTD, vol. 24, no. 2, pp. 161–166, 2023, doi: 10.18229/kocatepetip.1016199.
ISNAD Korkmaz, Serhat - Karabekir, Hamit Selim. “THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY”. Kocatepe Tıp Dergisi 24/2 (April 2023), 161-166. https://doi.org/10.18229/kocatepetip.1016199.
JAMA Korkmaz S, Karabekir HS. THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY. KTD. 2023;24:161–166.
MLA Korkmaz, Serhat and Hamit Selim Karabekir. “THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY”. Kocatepe Tıp Dergisi, vol. 24, no. 2, 2023, pp. 161-6, doi:10.18229/kocatepetip.1016199.
Vancouver Korkmaz S, Karabekir HS. THE EFFECT OF ANTERIOR INTERBODY CAGE BORON APPLICATION IN RABBIT VERTEBRAE ON BONE FUSION AND FUSION QUALITY. KTD. 2023;24(2):161-6.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.