Review
BibTex RIS Cite

COVID-19 AND EFFECTS ON THE CARDIOVASCULAR SYSTEM

Year 2024, , 260 - 269, 29.04.2024
https://doi.org/10.18229/kocatepetip.1100443

Abstract

Coronavirus Disease 2019 (COVID-19), which emerged at the end of 2019 and became a global pandemic, is not only a respiratory disease, but also affects other systems. The most important reason for this is the ability of the virus to bind to the angiotensin converting enzyme-2 (ACE2) receptor.The cardiovascular system is one of the main systems that are directly or indirectly affected by COVID-19. Regardless of respiratory symptoms, patients can be diagnosed with COVID-19 by applying to the hospital with complaints such as chest pain and palpitation. Also in the course of COVID-19 cardiological such as arrhythmia, acute coronary syndrome, myocarditis, heart failure; vascular effect patterns such as venous thromboembolism may also be seen. Worse outcomes are generally encountered when cardiovascular system involvement accompanies the course of COVID-19. Another aspect of the relationship between SARS-CoV-2 infection and the cardiovascular system is that the underlying cardiovascular system diseases adversely affect the prognosis of COVID-19. In the presence of conditions such as underlying hypertension, coronary artery disease, and heart failure, patients' exposure to COVID-19 results much worse. Unfortunately, it is reported that this cardiovascular system involvement is also observed in the "Prolonged COVID-19" period, which continues after the COVID-19. The frequency and duration of symptoms and signs vary in prolonged cases of COVID-19. Prolonged COVID-19 is characterized as alarming because of its widespread monitoring and long duration. In addition, after the introduction of mRNA vaccines, there has been an increase in vaccine-related myocarditis and pericarditis cases, especially in young men. However, this increase is at a very low rate compared to myocarditis and pericarditis cases due to the disease, and it has been determined that it is much safer in terms of mortality. In this review, it is aimed to evaluate the effect of COVID-19 and COVID-19 vaccines on the cardiovascular system and to present a holistic perspective to the clinicians who follow these patients.

References

  • 1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.
  • 2. World Health Organization (WHO). WHO Director-General's opening remarks at the media briefing on COVID-19 / 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s- opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 Erişim tarihi: 01 Mart 2022.
  • 3. Sağlık Bakanlığı COVID-19 Bilgilendirme Platformu. https://covid19.saglik.gov.tr/. Erişim tarihi: 08 Nisan 2022.
  • 4. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and multiorgan response. Curr Probl Cardiol. 2020;45(8):100618.
  • 5. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2.
  • 6. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7.
  • 7. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294.
  • 8. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother. 2020;127:110195.
  • 9. Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol. 2008;295(6):2373-79.
  • 10. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020;202(5):756-59.
  • 11. Oudit GY, Kassiri Z, Jiang C, et al. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25.
  • 12. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60.
  • 13. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100.
  • 14. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71.
  • 15. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • 16. Tsao CW, Strom JB, Chang JD, Manning WJ. COVID-19–associated stress (Takotsubo) cardiomyopathy. Circ Cardiovasc Imaging. 2020;13(7):e011222.
  • 17. Fox SE, Lameira FS, Rinker EB, Vander Heide RS. Cardiac endotheliitis and multisystem inflammatory syndrome after COVID-19. Ann Intern Med. 2020;173(12):1025-7.
  • 18. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8.
  • 19. Tersalvi G, Vicenzi M, Calabretta D, et al. Elevated troponin in patients with coronavirus disease 2019: possible Mechanisms. J Card Fail. 2020;26(6):470-5.
  • 20. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038-44.
  • 21. Groß S, Jahn C, Cushman S, Bär C, Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Mol Cell Cardiol. 2020;144:47-53.
  • 22. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
  • 23. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9.
  • 24. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York city. N Eng J Med. 2020;382(24):2372-4.
  • 25. Liao SC, Shao SC, Cheng CW, Chen YC, Hung MJ. Incidence rate and clinical impacts of arrhythmia following COVID-19: a systematic review and meta-analysis of 17,435 patients. Crit Care. 2020;24(1):1-7.
  • 26. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329-36.
  • 27. Coromilas EJ, Kochav S, Goldenthal I, et al. Worldwide survey of COVID-19–associated arrhythmias. Circ Arrhythm Electrophysiol. 2021;14(3:e009458.
  • 28. Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020;17(9):1439-44.
  • 29. Guo T, Fan Y, Chen M, Wu X, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8.
  • 30. Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(09):1025-31.
  • 31. Chen T, Wu DI, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368.
  • 32. Dong N, Cai J, Zhou Y, Liu J, Li F. End-stage heart failure with COVID-19: strong evidence of myocardial injury by 2019-nCoV. JACC Heart Fail. 2020;8(6):515-7.
  • 33. Fried JA, Ramasubbu K, Bhatt R, et al. The variety of cardiovascular presentations of COVID-19. Circulation. 2020;141(23):1930-6.
  • 34. Alvarez-Garcia J, Lee S, Gupta A, et al. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76(20):2334-48.
  • 35. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648-55.
  • 36. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • 37. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8.
  • 38. Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463-71.
  • 39. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10.
  • 40. Lombardi CM, Carubelli V, Iorio A, et al. Association of troponin levels with mortality in Italian patients hospitalized with coronavirus disease 2019: results of a multicenter study. JAMA Cardiol. 2020;5(11):1274-80.
  • 41. Zeng JH, Liu YX, Yuan J, Wang FX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773-7.
  • 42. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206-206.
  • 43. Cizgici AY, Agus HZ, Yildiz M. COVID-19 myopericarditis: it should be kept in mind in today's conditions. Am J Emerg Med. 2020;38(7):1547-e5.
  • 44. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229),1033-34.
  • 45. Staedtke V, Bai RY, Kim K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature. 2018;564(7735):273-7.
  • 46. Singh S, Desai R, Gandhi Z, Fong HK, Doreswamy S, Desai V, et al. Takotsubo syndrome in patients with COVID-19: a systematic review of published cases. SN Compr Clin Med. 2020;2(11):2102-8.
  • 47. Welt FG, Shah PB, Aronow HD, et al. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: from the ACC’s Interventional Council and SCAI. J Am Coll Cardiol. 2020;75(18):2372- 5.
  • 48. Katsoularis I, Fonseca-Rodríguez O, Farrington P, Lindmark K, Connolly AMF. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599-607.
  • 49. Modin D, Claggett B, Sindet-Pedersen C, Lassen MCH, Skaarup KG, Jensen JUS, et al. Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction. Circulation. 2020;142(21):2080-2.
  • 50. De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J. 2020;41(22):2083-8.
  • 51. Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Eng J Med. 2020;383(7):691-3.
  • 52. Mafham MM, Spata E, Goldacre R, et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet. 2020;396(10248):381-9.
  • 53. Li SR, Tang ZJ, Li ZH, Liu X. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur J Clin Microbiol Infect Dis. 2020;39(6):1021-6.
  • 54. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950-73.
  • 55. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4): 844-7.
  • 56. Yao XH, Li TY, He ZC, Ping YF, Liu HW, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411-7.
  • 57. National Institute of Health and Care Excellence (NICE). COVID-19 rapid guideline: managing the longterm effects of COVID-19. https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline- managing-the-longterm-effects-of-covid19-pdf-51035515742. Erişim tarihi: 01 Mart 2022.
  • 58. Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-5.
  • 59. Xiong Q, Xu M, Li J, Liu Y, Zhang J, Xu Y, et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect. 2021;27(1):89-95.
  • 60. Petersen MS, Kristiansen MF, Hanusson KD, Danielsen ME, et al. Long COVID in the Faroe Islands: a longitudinal study among nonhospitalized patients. Clin Infect Dis. 2021;73(11):4058-63.
  • 61. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533-46.
  • 62. Kotecha T, Knight DS, Razvi Y, Kumar K, et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J. 2021;42(19):1866-78.
  • 63. Daniels CJ, Rajpal S, Greenshields JT, Rosenthal GL, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry. JAMA Cardiol. 2021;6(9):1078-87.
  • 64. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-73.
  • 65. Gargano JW, Wallace M, Hadler SC, Langley G, et al. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the Advisory Committee on Immunization Practices United States, June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(27): 977-82.
  • 66. Centers for Disease Control and Prevention (CDC). Use of Pfizer-BioNTech COVID-19 Vaccine in Persons Aged ≥16 Years: Recommendations of the Advisory Committee on Immunization Practices - United States, September 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7038e2.htm?s_cid=mm7038e2_w. Erişim tarihi: 01 Mart 2022.
  • 67. Centers for Disease Control and Prevention (CDC). Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States.https://www.cdc.gov/vaccines/covid- 19/clinical-considerations/interim-considerations-us.html#recommendations. Erişim tarihi: 01 Mart 2022.
  • 68. Jain SS, Steele JM, Fonseca B, Huang S, Shah S, Maskatia SA, et al. COVID-19 Vaccination–Associated Myocarditis in Adolescents. Pediatrics. 2021;148(5):e2021053427.
  • 69. Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and pericarditis following mRNA COVID-19 vaccination: what do we know so far?. Children (Basel). 2021;8(7):607.
  • 70. Marshall M, Ferguson ID, Lewis P, Jaggi P, et al. Symptomatic acute myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination. Pediatrics. 2021;148(3):e2021052478.
  • 71. Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202-6.
  • 72. Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021;326(12):1210-2.
  • 73. Thomas SJ, Moreira Jr ED, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Eng J Med. 2021;385(19):1761-73.
  • 74. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, et al. Myocarditis after Covid-19 vaccination in a large health care organization. N Eng J Med. 2021;385:2132-9.
  • 75. Schauer J, Buddhe S, Colyer J, Sagiv E, Law Y, et al. Myopericarditis after the Pfizer messenger ribonucleic acid coronavirus disease vaccine in adolescents. Pediatr. 2021;238:317-20.
  • 76. Haaf P, Kuster GM, Mueller C, Berger CT, Monney P, Burger P, et al. The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Med Wkly.2021;(41).

COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ

Year 2024, , 260 - 269, 29.04.2024
https://doi.org/10.18229/kocatepetip.1100443

Abstract

2019 yılının sonunda çıkan ve global bir pandemi haline gelen Coronavirüs Hastalığı 2019 (COVID-19) sadece solunum sistemini tutan bir hastalık olmayıp diğer sistemleri de etkilemektedir. Bunun en önemli nedeni virüsün, anjiotensin dönüştürücü enzim-2 (ACE2) reseptörüne bağlanabilme özelliğidir. Kardiyovasküler sistem COVID-19’dan doğrudan veya dolaylı yollarla etkilenen sistemlerin başlıcalarından biridir. Hastalar respiratuar semptomlardan bağımsız olarak göğüs ağrısı, çarpıntı gibi şikayetlerle hastaneye başvurarak COVID-19 tanısı alabilmektedir. Ayrıca COVID-19 seyrinde aritmi, akut koroner sendrom, myokardit, kalp yetmezliği gibi kardiyolojik; venöz tromboemboli gibi vasküler etki paternleri de görülebilmektedir. COVID-19 seyrine kardiyovasküler sistem tutulumu eşlik ettiğinde genellikle daha kötü sonlanımlarla karşılaşılmaktadır. SARS-CoV-2 enfeksiyonu ile kardiyovasküler sistem ilişkisinin bir diğer açısı da altta yatan kardiyovasküler sistem hastalıklarının COVID-19 prognozunu olumsuz yönde etkilemesidir. Altta yatan hipertansiyon, koroner arter hastalığı, kalp yetmezliği gibi durumlar varlığında hastaların COVID-19’dan etkilenimi çok daha kötü sonuçlanmaktadır. Ne yazık ki bu kardiyovasküler sistem etkileniminin COVID-19’un ardından devam eden “Uzamış COVID-19” döneminde de izlendiği bildirilmektedir. Uzamış COVID-19 vakalarında semptom ve bulguların sıklığı ve süresi değişkenlik göstermektedir. Yaygın olarak izlenmesi ve uzun sürmesi nedeniyle uzamış COVID-19 endişe verici olarak nitelendirilmektedir. Bunların yanı sıra mRNA aşılarının kullanıma girmesinin ardından, özellikle genç erkeklerde aşı ile ilişkili myokardit ve perikardit vakalarında artış saptanmıştır. Ancak bu artışın hastalığa bağlı olarak ortaya çıkan myokardit ve perikardit vakalarına göre oldukça düşük bir oranda olup mortalite açısından ise çok daha güvenli olduğu tespit edilmiştir. Bu derlemede, COVID-19’un ve COVID-19 aşılarının kardiyovasküler sistem üzerine olan etkisinin değerlendirilmesi ve bu hastaların takibini yapan klinisyenlere bütüncül bir bakış açısının sunulması hedeflenmiştir.

References

  • 1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.
  • 2. World Health Organization (WHO). WHO Director-General's opening remarks at the media briefing on COVID-19 / 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s- opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 Erişim tarihi: 01 Mart 2022.
  • 3. Sağlık Bakanlığı COVID-19 Bilgilendirme Platformu. https://covid19.saglik.gov.tr/. Erişim tarihi: 08 Nisan 2022.
  • 4. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and multiorgan response. Curr Probl Cardiol. 2020;45(8):100618.
  • 5. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2.
  • 6. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7.
  • 7. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294.
  • 8. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother. 2020;127:110195.
  • 9. Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol. 2008;295(6):2373-79.
  • 10. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020;202(5):756-59.
  • 11. Oudit GY, Kassiri Z, Jiang C, et al. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25.
  • 12. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60.
  • 13. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100.
  • 14. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71.
  • 15. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • 16. Tsao CW, Strom JB, Chang JD, Manning WJ. COVID-19–associated stress (Takotsubo) cardiomyopathy. Circ Cardiovasc Imaging. 2020;13(7):e011222.
  • 17. Fox SE, Lameira FS, Rinker EB, Vander Heide RS. Cardiac endotheliitis and multisystem inflammatory syndrome after COVID-19. Ann Intern Med. 2020;173(12):1025-7.
  • 18. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8.
  • 19. Tersalvi G, Vicenzi M, Calabretta D, et al. Elevated troponin in patients with coronavirus disease 2019: possible Mechanisms. J Card Fail. 2020;26(6):470-5.
  • 20. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038-44.
  • 21. Groß S, Jahn C, Cushman S, Bär C, Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Mol Cell Cardiol. 2020;144:47-53.
  • 22. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
  • 23. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9.
  • 24. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York city. N Eng J Med. 2020;382(24):2372-4.
  • 25. Liao SC, Shao SC, Cheng CW, Chen YC, Hung MJ. Incidence rate and clinical impacts of arrhythmia following COVID-19: a systematic review and meta-analysis of 17,435 patients. Crit Care. 2020;24(1):1-7.
  • 26. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329-36.
  • 27. Coromilas EJ, Kochav S, Goldenthal I, et al. Worldwide survey of COVID-19–associated arrhythmias. Circ Arrhythm Electrophysiol. 2021;14(3:e009458.
  • 28. Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020;17(9):1439-44.
  • 29. Guo T, Fan Y, Chen M, Wu X, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8.
  • 30. Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(09):1025-31.
  • 31. Chen T, Wu DI, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368.
  • 32. Dong N, Cai J, Zhou Y, Liu J, Li F. End-stage heart failure with COVID-19: strong evidence of myocardial injury by 2019-nCoV. JACC Heart Fail. 2020;8(6):515-7.
  • 33. Fried JA, Ramasubbu K, Bhatt R, et al. The variety of cardiovascular presentations of COVID-19. Circulation. 2020;141(23):1930-6.
  • 34. Alvarez-Garcia J, Lee S, Gupta A, et al. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76(20):2334-48.
  • 35. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648-55.
  • 36. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • 37. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8.
  • 38. Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463-71.
  • 39. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10.
  • 40. Lombardi CM, Carubelli V, Iorio A, et al. Association of troponin levels with mortality in Italian patients hospitalized with coronavirus disease 2019: results of a multicenter study. JAMA Cardiol. 2020;5(11):1274-80.
  • 41. Zeng JH, Liu YX, Yuan J, Wang FX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773-7.
  • 42. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206-206.
  • 43. Cizgici AY, Agus HZ, Yildiz M. COVID-19 myopericarditis: it should be kept in mind in today's conditions. Am J Emerg Med. 2020;38(7):1547-e5.
  • 44. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229),1033-34.
  • 45. Staedtke V, Bai RY, Kim K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature. 2018;564(7735):273-7.
  • 46. Singh S, Desai R, Gandhi Z, Fong HK, Doreswamy S, Desai V, et al. Takotsubo syndrome in patients with COVID-19: a systematic review of published cases. SN Compr Clin Med. 2020;2(11):2102-8.
  • 47. Welt FG, Shah PB, Aronow HD, et al. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: from the ACC’s Interventional Council and SCAI. J Am Coll Cardiol. 2020;75(18):2372- 5.
  • 48. Katsoularis I, Fonseca-Rodríguez O, Farrington P, Lindmark K, Connolly AMF. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599-607.
  • 49. Modin D, Claggett B, Sindet-Pedersen C, Lassen MCH, Skaarup KG, Jensen JUS, et al. Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction. Circulation. 2020;142(21):2080-2.
  • 50. De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J. 2020;41(22):2083-8.
  • 51. Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Eng J Med. 2020;383(7):691-3.
  • 52. Mafham MM, Spata E, Goldacre R, et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet. 2020;396(10248):381-9.
  • 53. Li SR, Tang ZJ, Li ZH, Liu X. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur J Clin Microbiol Infect Dis. 2020;39(6):1021-6.
  • 54. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950-73.
  • 55. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4): 844-7.
  • 56. Yao XH, Li TY, He ZC, Ping YF, Liu HW, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411-7.
  • 57. National Institute of Health and Care Excellence (NICE). COVID-19 rapid guideline: managing the longterm effects of COVID-19. https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline- managing-the-longterm-effects-of-covid19-pdf-51035515742. Erişim tarihi: 01 Mart 2022.
  • 58. Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-5.
  • 59. Xiong Q, Xu M, Li J, Liu Y, Zhang J, Xu Y, et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect. 2021;27(1):89-95.
  • 60. Petersen MS, Kristiansen MF, Hanusson KD, Danielsen ME, et al. Long COVID in the Faroe Islands: a longitudinal study among nonhospitalized patients. Clin Infect Dis. 2021;73(11):4058-63.
  • 61. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533-46.
  • 62. Kotecha T, Knight DS, Razvi Y, Kumar K, et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J. 2021;42(19):1866-78.
  • 63. Daniels CJ, Rajpal S, Greenshields JT, Rosenthal GL, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry. JAMA Cardiol. 2021;6(9):1078-87.
  • 64. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-73.
  • 65. Gargano JW, Wallace M, Hadler SC, Langley G, et al. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the Advisory Committee on Immunization Practices United States, June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(27): 977-82.
  • 66. Centers for Disease Control and Prevention (CDC). Use of Pfizer-BioNTech COVID-19 Vaccine in Persons Aged ≥16 Years: Recommendations of the Advisory Committee on Immunization Practices - United States, September 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7038e2.htm?s_cid=mm7038e2_w. Erişim tarihi: 01 Mart 2022.
  • 67. Centers for Disease Control and Prevention (CDC). Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States.https://www.cdc.gov/vaccines/covid- 19/clinical-considerations/interim-considerations-us.html#recommendations. Erişim tarihi: 01 Mart 2022.
  • 68. Jain SS, Steele JM, Fonseca B, Huang S, Shah S, Maskatia SA, et al. COVID-19 Vaccination–Associated Myocarditis in Adolescents. Pediatrics. 2021;148(5):e2021053427.
  • 69. Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and pericarditis following mRNA COVID-19 vaccination: what do we know so far?. Children (Basel). 2021;8(7):607.
  • 70. Marshall M, Ferguson ID, Lewis P, Jaggi P, et al. Symptomatic acute myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination. Pediatrics. 2021;148(3):e2021052478.
  • 71. Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202-6.
  • 72. Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021;326(12):1210-2.
  • 73. Thomas SJ, Moreira Jr ED, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Eng J Med. 2021;385(19):1761-73.
  • 74. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, et al. Myocarditis after Covid-19 vaccination in a large health care organization. N Eng J Med. 2021;385:2132-9.
  • 75. Schauer J, Buddhe S, Colyer J, Sagiv E, Law Y, et al. Myopericarditis after the Pfizer messenger ribonucleic acid coronavirus disease vaccine in adolescents. Pediatr. 2021;238:317-20.
  • 76. Haaf P, Kuster GM, Mueller C, Berger CT, Monney P, Burger P, et al. The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Med Wkly.2021;(41).
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Fatma Yekta Urkmez 0000-0002-5438-4623

Esra Polat 0000-0002-2330-2816

Publication Date April 29, 2024
Acceptance Date June 26, 2022
Published in Issue Year 2024

Cite

APA Urkmez, F. Y., & Polat, E. (2024). COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ. Kocatepe Tıp Dergisi, 25(2), 260-269. https://doi.org/10.18229/kocatepetip.1100443
AMA Urkmez FY, Polat E. COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ. KTD. April 2024;25(2):260-269. doi:10.18229/kocatepetip.1100443
Chicago Urkmez, Fatma Yekta, and Esra Polat. “COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ”. Kocatepe Tıp Dergisi 25, no. 2 (April 2024): 260-69. https://doi.org/10.18229/kocatepetip.1100443.
EndNote Urkmez FY, Polat E (April 1, 2024) COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ. Kocatepe Tıp Dergisi 25 2 260–269.
IEEE F. Y. Urkmez and E. Polat, “COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ”, KTD, vol. 25, no. 2, pp. 260–269, 2024, doi: 10.18229/kocatepetip.1100443.
ISNAD Urkmez, Fatma Yekta - Polat, Esra. “COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ”. Kocatepe Tıp Dergisi 25/2 (April 2024), 260-269. https://doi.org/10.18229/kocatepetip.1100443.
JAMA Urkmez FY, Polat E. COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ. KTD. 2024;25:260–269.
MLA Urkmez, Fatma Yekta and Esra Polat. “COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ”. Kocatepe Tıp Dergisi, vol. 25, no. 2, 2024, pp. 260-9, doi:10.18229/kocatepetip.1100443.
Vancouver Urkmez FY, Polat E. COVID-19 VE KARDİYOVASKÜLER SİSTEME ETKİLERİ. KTD. 2024;25(2):260-9.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.