Research Article
BibTex RIS Cite

SERUM ANJİYOPOİETİN BENZERİ PROTEİN 8 DÜZEYLERİ İLE HİPERTANSİYON EVRELERİ ARASINDAKİ İLİŞKİ

Year 2024, , 413 - 419, 21.10.2024
https://doi.org/10.18229/kocatepetip.1419363

Abstract

AMAÇ: Hipertansiyon ciddi komplikasyonlara yol açabilen ciddi bir durumdur. Günümüzde, hipertansiyon tanısı koymak ve hastalığı evrelemek için klinik uygulamada kullanılan standart bir biyobelirteç yoktur. Bu çalışmanın amacı, anjiyopoietin benzeri protein 8'in (sANGPTL8) serum düzeylerinin hipertansiyon hastalarında ve hipertansiyonun ileri evrelerinde değişip değişmediğini araştırmaktır.
GEREÇ VE YÖNTEM: Çalışmamız, prospektif gözlemsel bir çalışmadır. Kardiyoloji polikliniğimizde, 42 hipertansif ve 41 hipertansif olmayan sağlıklı hastada, sANGPTL8 düzeylerini ölçmek için bir ELISA kiti kullandık ve gruplar arasındaki istatistiksel farklılıkları değerlendirdik. Two-tailed p< 0.05 değerini istatistiksel olarak anlamlı kabul ettik.
BULGULAR: Evre 2 hipertansiyon grubundaki ortalama sANGPTL8 düzeyleri, evre 1 ve hipertansif olmayan gruba göre istatistiksel olarak anlamlı derecede yüksek olarak tespit edildi (sırasıyla, 813 pg/ml, 524.89 pg/ml ve 518.07 pg/ml) (p= 0.001).
SONUÇ: Çalışmamız, evre 2 hipertansif hastalarda ortalama sANGPTL8 düzeylerinin, evre 1 hipertansif ve normotansif bireylerden daha yüksek olduğunu göstermiştir (p= 0.001). ANGPTL8 ile birlikte kullanılabilecek ek biyobelirteçler ve ANGPTL8 üzerine yapılacak daha fazla araştırma, bu adipokinin ileri evre hipertansiyon tanısında etkili bir biyobelirteç olarak kullanılmasını sağlayabilir.

References

  • 1. Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392.10159: 1923-94.
  • 2. Blood Pressure Lowering Treatment Trialists' Collaboration (No authors listed). Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. The Lancet. 2014;384 (9943): 591-8.
  • 3. Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell. 2013;153(4):747-58.
  • 4. Zhang R, Abou-Samra AB. A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol. 2014;13:133.
  • 5. Siddiqa A, Cirillo E, Tareen S. H. K, et al. Visualizing the regulatory role of Angiopoietin-like protein 8 (ANGPTL8) in glucose and lipid metabolic pathways. Genomics, 2017;109(5-6), 408–18.
  • 6. Yin Y, Ding X, Peng L, et al. Increased Serum ANGPTL8 Concentrations in Patients with Prediabetes and Type 2 Diabetes. Journal of diabetes research. 2017;2017:8293207.
  • 7. Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):334-51.
  • 8. Zhang Y, Li S, Donelan W, et al. Angiopoietin-like protein 8 (betatrophin) is a stress-response protein that down-regulates expression of adipocyte triglyceride lipase. Biochim Biophys Acta. 2016;1861(2):130-7.
  • 9. Van Beusecum JP, Barbaro NR, McDowell Z, et al. High Salt Activates CD11c+ Antigen-Presenting Cells via SGK (Serum Glucocorticoid Kinase) 1 to Promote Renal Inflammation and Salt-Sensitive Hypertension. Hypertension. 2019;74(3):555-63.
  • 10. Wu J, Saleh MA, Kirabo A, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126(4):1607.
  • 11. Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449-60.
  • 12. Norlander AE, Saleh MA, Pandey AK, et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight. 2017;2(13):e92801.
  • 13. Jayedi A, Rahimi K, Bautista L. E, et al. Inflammation markers and risk of developing hypertension: a meta- analysis of cohort studies. Heart. 2019;105(9):686-92.
  • 14. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension [published correction appears in Eur Heart J. 2019 Feb 1;40(5):475]. Eur Heart J. 2018;39(33):3021-104.
  • 15. George D, Mallery M (Edited by). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 Update, 10th ed. Boston: Pearson. 2010.
  • 16. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation [published correction appears in J Exp Psychol Gen. 2012 Feb;141(1):30]. J Exp Psychol Gen. 2012;141(1):2-18.
  • 17. Edward MM, Bruce MK (Edited by). Statistical Reasoning in Psychology and Education. 4th ed. USA: Wiley, 2002.
  • 18. Coolican H (Edited by). Research Methods and Statistics in Psychology. 5th ed. United Kingdom: Taylor& Francis, 2009.
  • 19. Carretero OA, Oparil S. Essential hypertension : part II: treatment. Circulation. 2000;101(4):446-53.
  • 20. Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun. 2012;424(4):786-92.
  • 21. Abu-Farha M, Al-Khairi I, Cherian P, et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids in health and disease. 2016;15(1):181.
  • 22. Ye J, Qin Y, Wang D, Yang L, Yuan G. The Relationship between Circulating ANGPTL8/Betatrophin Concentrations and Adult Obesity: A Meta-Analysis. Dis Markers. 2019;2019:5096860.
  • 23. Zhang Y, Guo X, Yan W, et al. ANGPTL8 negatively regulates NF-κB activation by facilitating selective autophagic degradation of IKKγ. Nat Commun. 2017;8(1):2164.
  • 24. Gimbrone MA Jr, Nagel T, Topper JN. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest. 1997;99(8):1809-13.
  • 25. Maurer L, Schwarz F, Fischer-Rosinsky A, et al. Renal function is independently associated with circulating betatrophin. PLoS One. 2017;12(3):e0173197.
  • 26. Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38(3):399-403.
  • 27. Abu-Farha M, Cherian P, Qaddoumi MG, et al. Increased plasma and adipose tissue levels of ANGPTL8/Betatrophin and ANGPTL4 in people with hypertension. Lipids in health and disease. 2018;17(1):35.
  • 28. Hu L, Wei J, Zhang Y, et al. ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell death & disease. 2022;13(7):621.
  • 29. Jiao X, Yu H, Du Z, et al. Vascular smooth muscle cells specific deletion of angiopoietin-like protein 8 prevents angiotensin II-promoted hypertension and cardiovascular hypertrophy. Cardiovasc Res. 2023;119(9):1856-68.

THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES

Year 2024, , 413 - 419, 21.10.2024
https://doi.org/10.18229/kocatepetip.1419363

Abstract

OBJECTIVE: Hypertension is a serious condition that can lead to serious complications. Currently, there is no standard biomarker used in clinical practice to diagnose hypertension and stage the disease. The aim of this study was to investigate whether serum levels of angiopoietin-like protein 8 (sANGPTL8) change in hypertensive patients and advanced stages of hypertension.
MATERIAL AND METHODS: Our study is a prospective observational study. We used an ELISA kit to measure sANGPTL8 levels in 42 hypertensive patients and 41 healthy non-hypertensive patients at our cardiology clinic and evaluated statistical differences between the groups. A two-tailed p< 0.05 was considered statistically significant.
RESULTS: The mean sANGPTL8 levels in the stage 2 hypertension group are statistically significantly higher than in the stage 1 and non-hypertensive group (813 pg/ml vs 524.89 pg/ml and 518.07 pg/ml respectively) (p= 0.001).
CONCLUSIONS: According to our study, mean sANGPTL8 levels were higher in stage 2 hypertensive patients compared to stage 1 hypertensive and normotensive individuals (p=0.001). Additional biomarkers that can be used in combination with ANGPTL8 and further research on ANGPTL8 may enable this adipokine to be used as an effective biomarker in diagnosing advanced hypertension.

References

  • 1. Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392.10159: 1923-94.
  • 2. Blood Pressure Lowering Treatment Trialists' Collaboration (No authors listed). Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. The Lancet. 2014;384 (9943): 591-8.
  • 3. Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell. 2013;153(4):747-58.
  • 4. Zhang R, Abou-Samra AB. A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol. 2014;13:133.
  • 5. Siddiqa A, Cirillo E, Tareen S. H. K, et al. Visualizing the regulatory role of Angiopoietin-like protein 8 (ANGPTL8) in glucose and lipid metabolic pathways. Genomics, 2017;109(5-6), 408–18.
  • 6. Yin Y, Ding X, Peng L, et al. Increased Serum ANGPTL8 Concentrations in Patients with Prediabetes and Type 2 Diabetes. Journal of diabetes research. 2017;2017:8293207.
  • 7. Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):334-51.
  • 8. Zhang Y, Li S, Donelan W, et al. Angiopoietin-like protein 8 (betatrophin) is a stress-response protein that down-regulates expression of adipocyte triglyceride lipase. Biochim Biophys Acta. 2016;1861(2):130-7.
  • 9. Van Beusecum JP, Barbaro NR, McDowell Z, et al. High Salt Activates CD11c+ Antigen-Presenting Cells via SGK (Serum Glucocorticoid Kinase) 1 to Promote Renal Inflammation and Salt-Sensitive Hypertension. Hypertension. 2019;74(3):555-63.
  • 10. Wu J, Saleh MA, Kirabo A, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126(4):1607.
  • 11. Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449-60.
  • 12. Norlander AE, Saleh MA, Pandey AK, et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight. 2017;2(13):e92801.
  • 13. Jayedi A, Rahimi K, Bautista L. E, et al. Inflammation markers and risk of developing hypertension: a meta- analysis of cohort studies. Heart. 2019;105(9):686-92.
  • 14. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension [published correction appears in Eur Heart J. 2019 Feb 1;40(5):475]. Eur Heart J. 2018;39(33):3021-104.
  • 15. George D, Mallery M (Edited by). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 Update, 10th ed. Boston: Pearson. 2010.
  • 16. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation [published correction appears in J Exp Psychol Gen. 2012 Feb;141(1):30]. J Exp Psychol Gen. 2012;141(1):2-18.
  • 17. Edward MM, Bruce MK (Edited by). Statistical Reasoning in Psychology and Education. 4th ed. USA: Wiley, 2002.
  • 18. Coolican H (Edited by). Research Methods and Statistics in Psychology. 5th ed. United Kingdom: Taylor& Francis, 2009.
  • 19. Carretero OA, Oparil S. Essential hypertension : part II: treatment. Circulation. 2000;101(4):446-53.
  • 20. Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun. 2012;424(4):786-92.
  • 21. Abu-Farha M, Al-Khairi I, Cherian P, et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids in health and disease. 2016;15(1):181.
  • 22. Ye J, Qin Y, Wang D, Yang L, Yuan G. The Relationship between Circulating ANGPTL8/Betatrophin Concentrations and Adult Obesity: A Meta-Analysis. Dis Markers. 2019;2019:5096860.
  • 23. Zhang Y, Guo X, Yan W, et al. ANGPTL8 negatively regulates NF-κB activation by facilitating selective autophagic degradation of IKKγ. Nat Commun. 2017;8(1):2164.
  • 24. Gimbrone MA Jr, Nagel T, Topper JN. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest. 1997;99(8):1809-13.
  • 25. Maurer L, Schwarz F, Fischer-Rosinsky A, et al. Renal function is independently associated with circulating betatrophin. PLoS One. 2017;12(3):e0173197.
  • 26. Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38(3):399-403.
  • 27. Abu-Farha M, Cherian P, Qaddoumi MG, et al. Increased plasma and adipose tissue levels of ANGPTL8/Betatrophin and ANGPTL4 in people with hypertension. Lipids in health and disease. 2018;17(1):35.
  • 28. Hu L, Wei J, Zhang Y, et al. ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell death & disease. 2022;13(7):621.
  • 29. Jiao X, Yu H, Du Z, et al. Vascular smooth muscle cells specific deletion of angiopoietin-like protein 8 prevents angiotensin II-promoted hypertension and cardiovascular hypertrophy. Cardiovasc Res. 2023;119(9):1856-68.
There are 29 citations in total.

Details

Primary Language English
Subjects Cardiology
Journal Section Articles
Authors

Güney Sarıoğlu 0000-0002-1049-1873

İbrahim Aktaş 0000-0002-2982-8384

Publication Date October 21, 2024
Submission Date January 13, 2024
Acceptance Date April 8, 2024
Published in Issue Year 2024

Cite

APA Sarıoğlu, G., & Aktaş, İ. (2024). THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES. Kocatepe Tıp Dergisi, 25(4), 413-419. https://doi.org/10.18229/kocatepetip.1419363
AMA Sarıoğlu G, Aktaş İ. THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES. KTD. October 2024;25(4):413-419. doi:10.18229/kocatepetip.1419363
Chicago Sarıoğlu, Güney, and İbrahim Aktaş. “THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES”. Kocatepe Tıp Dergisi 25, no. 4 (October 2024): 413-19. https://doi.org/10.18229/kocatepetip.1419363.
EndNote Sarıoğlu G, Aktaş İ (October 1, 2024) THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES. Kocatepe Tıp Dergisi 25 4 413–419.
IEEE G. Sarıoğlu and İ. Aktaş, “THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES”, KTD, vol. 25, no. 4, pp. 413–419, 2024, doi: 10.18229/kocatepetip.1419363.
ISNAD Sarıoğlu, Güney - Aktaş, İbrahim. “THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES”. Kocatepe Tıp Dergisi 25/4 (October 2024), 413-419. https://doi.org/10.18229/kocatepetip.1419363.
JAMA Sarıoğlu G, Aktaş İ. THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES. KTD. 2024;25:413–419.
MLA Sarıoğlu, Güney and İbrahim Aktaş. “THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES”. Kocatepe Tıp Dergisi, vol. 25, no. 4, 2024, pp. 413-9, doi:10.18229/kocatepetip.1419363.
Vancouver Sarıoğlu G, Aktaş İ. THE RELATIONSHIP BETWEEN SERUM ANGIOPOIETIN-LIKE PROTEIN 8 LEVELS AND HYPERTENSION STAGES. KTD. 2024;25(4):413-9.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.