Research Article
BibTex RIS Cite

THE EVALUATION OF DOSIMETRIC PARAMETERS FOR PELVIC INTENSITY RADIOTHERAPY AND SIMULTANE INTEGRATED BOOST TREATMENT PLANS IN PROSTAT CANCER

Year 2021, Volume: 22 Issue: 2, 80 - 87, 12.04.2021
https://doi.org/10.18229/kocatepetip.658264

Abstract

OBJECTIVE: The aim of this study is to compare two different Conformity Index (CI), Critical organ scoring index (COSI), Tumor control probability (TCP) and Normal Tissue complication probability (NTCP) calculations, and Dose Volüme Histogram (DVH) parameters of 3 different IMRT treatment techniques in prostate cancer patients who underwent pelvic radiotherapy and prostate simultane integre boost (SIB).
MATERIAL AND METHODS: In this study, a total of 20 plans with conformal radiotherapy (3DCRT) and different intensity modulated radiotherapy (IMRT) techniques were made in the treatment planning system for 5 prostate cancer patients who had been treated in our clinic. In the evaluation of plans; homogeneity index (HI), mean dose (Dmean), TCP and two different CI values were calculated for all planning target volumes (PTV). Also, DVH data, NTCP and COSI calculations for the rectum, bladder, small intestine and femoral head were found and evaluated. For normal tissue, the volume receiving half of the prescribed dose (V40Gy) and the volume receiving 90% (V72Gy) were evaluated.
RESULTS: The RTOGCI mean values for PTV2 and PTV3 were significantly closer to 1 with IMRT plans when compared to 3DCRT plan (P=0.007 and P=0.008, respectively). The PADDICKCI mean values for PTV1 and PTV2 revealed that 3DCRT plans were significantly worse than IMRT plans (P=0.011 and P=0.009, respectively). For the PTV1, according to the CI assessment, the 9IMRT plan was found to be the best, whereas the TCP assessment found the result in favor of the 7IMRT plan. The best plan for bladder and rectum was found 7IMRT. Although the small bowel volume of 195 cc was the best in 3DCRT, the results in the NTCP and COSI evaluation were in favor of 5IMRT. In addition, the lowest volume receiving half of the dose prescribed for normal tissue was found for 7IMRT in both DVH and COSI evaluation. (5.7% and 0.62, respectively).
CONCLUSIONS: In the study, the best technique for RTOGCIPTV1 was found to be 3DCRT, which leads to error in the evaluation. This shows that this index is incompatible with reality in multiple PTV definitions. Another index, PADDICKCI, takes into account the PTV and the organs at risk vicinity of the target. However, this index requires an additional equation in the evaluation of SIB plans. Therefore, we consider the use of TCP and NTCP radiobiological evaluation parameters as important tools for selecting the most applicable from multiple plans.

References

  • Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2014, National Cancer Institute.
  • Grossmann M, Wittert G. Androgens, diabetes and prostate cancer. Endocr Relat Cancer 2012; 19:47–62.
  • Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39:977–983.
  • Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. Engl J Med 2000; 343:78–84.
  • Rodriguez C, Patel AV, Mondul AM, Jacobs EJ, Thun MJ, Calle EE. Diabetes and risk of prostate cancer in a prospective cohort of US men. Am J Epidemiol 2005; 161:147–152.
  • Gunderson LL (Editör) and Tepper JE . Prostate cancer. In:Clinical radiation oncology. 4th edition USA. Elsevier; 2016:1038-1095.
  • Lips IM, van der Heide UA, Haustermans K, et al. Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 2011; 12:255.
  • Semerjian A, Pavlovich CP. Extraperitoneal robot-assisted radical prostatectomy: indications, technique and outcomes. Curr Urol Rep 2017;18:42.
  • Panje CM, Dal PA, Zilli T, et al. Consensus and differences in primary radiotherapy for localized and locally advanced prostate cancer in Switzerland: a survey on patterns of practice. Strahlenther Onkol 2015; 191:778–786.
  • Hocht S, Aebersold DM, Albrecht C, et al. Hypofractionated radiotherapy for localized prostate cancer. Strahlenther Onkol 2017; 193:1–12.
  • Fonteyne V, Villeirs G, Speleers B, et al. Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008; 72:799–807.
  • Nutting CM, Convery DJ, Cosgrove VP, et al. Reduction of small and large bowel irradiation using an optimised intensity modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 2000; 48:649–656.
  • Cavey ML, Bayouth JE, Colman M, Endres EJ and Sanguineti G. IMRT to escalate the dose to the prostate while treating the pelvic nodes. Strahlenther Onkol 2005; 181:431–441.
  • Alongi F, Fiorino C, Cozzarini C, Broggi S, Perna P, Cattaneo GM et al. IMRT significantly reduces acute toxicity of whole-pelvis irradiation in patients treated with post-operative adjuvant or salvage radiotherapy after radical prostatectomy. Radiother Oncol 2009; 93:207–212.
  • Guerrero UT, Khoo V, Staffurth J, Norman A, Buffa F, Jackson A et al. Intensity-modulated radiotherapy allows escalation of the radiation dose to the pelvic lymph nodes in patients with locally advanced prostate cancer: preliminary results of a phase I dose escalation study. Clin Oncol (R. Coll. Radiol.) 2010; 22:236–244.
  • Deville C, Vapiwala N, Hwang WT, Lin H, Ad VB, Tochner Z, et al. Comparative toxicity and dosimetric profile of whole-pelvis versus prostate bed-only intensity-modulated radiation therapy after prostatectomy. Int. J. Radiat Oncol Biol Phys 2012; 82:1389–1396.
  • Arcangeli S, Saracino B, Petrongari MG, Gomellini S, Marzi S, Landoni V et al. Analysis of toxicity in patients with high risk prostate cancer treated with intensity-modulated pelvic radiation therapy and simultaneous integrated dose escalation to prostate area. 2007; Radiother Oncol 84:148–155.
  • Anshuma B, Rakesh K, Narendra K, Arun S, Suresh S. Feasibility of Simultaneous Integrated Boost Intensity Modulated Radiotherapy treatment plans in patients with localized carcinoma prostate. Clinical Cancer investigation Journal 2012; (1):4;2016-211.
  • International Commission of Radiation Units and Measurements. ICRU report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). J ICRU 2010;10(1):1–106.
  • Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993;27(5):1231–9.
  • Alfonso JC, Herrero MA, Núñez L. A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans. Radiat Oncol 2015;10:263.
  • Moore KL, Brame RS, Low DA, Mutic S. Quantitative metrics for assessing plan quality. In: Seminars in radiation oncology 2012;22(1): 62-9.
  • Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys 2006;64(2):333–42.
  • Menhel J, Levin D, Alezra D, Symon Z, Pfeffer R. Assessing the quality of conformal treatment planning: a new tool for quantitative comparison. Phys Med Biol; 2006; 51(20):5363.
  • Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 2000; 3(93):219–222.
  • Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiologica Oncology 1984; 23:379-91.
  • Webb S, Nahum AE. A model for calculating tumour control probability in radiotherapy including the effects of inkomogeneous distributions of dose and clonogenic cell density. Phy Med Biol 1993; 38:652-66.
  • Nahum AE and Tait DM. Maximising control by customized dose prescription for pelvic tumors. Advanced Radiation Therapy: Tumour response monitoring and treatment planning, ed Breit A. (Heidelberg:Springer) 1992; 425-31.
  • Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res 1985;104(2s):13–19.
  • Burman C, Kutcher G, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991;21(1):123–35.
  • Tomé WA. and Fowler JF. On cold spots in tumor subvolumes. Med Phys 2002; 29(7):1590–1598.
  • Stavrev P, Hristov D. Prostate IMRT fractionation strategies: two-phase treatment versus simultaneous integrated boost. Radiol Oncol 2003; 37(2): 115-26.
  • Schlenter M, Berneking V, Krenkel B, et al. Intensity-modulated radiotherapy of prostate cancer with simultaneous integrated boost after molecular imaging with 18F-choline-PET/CT Strahlenther Onkol 2018; 194:638–645.
  • Li X, Alber M , Deasy J, et al. The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM. Medical Physics 2012; 39(3): 1386–1410.
  • Ling CC, Li XA. Over the next decade the success of radiation treatment planning will be judged by the immediate biological response of tumor cells rather than by surrogate measures such as dose maximization and uniformity. Med Phys 2005; 32(7):2189–2192.

PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ

Year 2021, Volume: 22 Issue: 2, 80 - 87, 12.04.2021
https://doi.org/10.18229/kocatepetip.658264

Abstract

AMAÇ: Çalışmada, pelvik radyoterapi ve prostata eşzamanlı ek doz (SIB) uygulanmış prostat kanserli hastalarda, konformal radyoterapi (3BKRT) çalışması temel alınarak, 3 farklı Yoğunluk Ayarlı Radyasyon Tedavisi (IMRT) tedavi tekniğine ait iki farklı Uygunluk indeksi (CI), Kritik Organ Skorlama İndeksi (COSI), Tümör Kontrol Olasılığı (TCP) ve Normal Dolu Komplikasyon Olasılığı (NTCP) hesaplamaları ile Doz Volüm Histogramları (DVH) parametrelerinin karşılaştırılması amaçlanmıştır.
GEREÇ VE YÖNTEM: Kliniğimizde tedavi görmüş 5 prostat kanserli hasta için tedavi planlama sisteminde 3BKRT ve farklı IMRT tekniklerinde toplam 20 plan yapılmıştır. Planların değerlendirilmesinde; tüm planlanan hedef hacimler (PTV) için Homojenite İndeksi (HI), Ortalama Doz (Dort), TCP ve iki farklı CI değeri hesaplanmıştır Rektum, mesane, ince barsak ve femur başı için DVH verileri, NTCP ve COSI hesaplamaları yapılmış ve değerlendirmeye alınmıştır. Normal doku için reçete edilen dozun yarısını alan hacim (V40Gy) ile %90’nı alan hacim (V72Gy) değerlendirilmiştir.
BULGULAR: PTV2 ve PTV3 için RTOGCI değerleri 3BKRT için IMRT teknikleri ile karşılaştırıldığında istatistiksel anlamlı olarak 1’e daha yakın bulunmuştur (sırasıyla, P = 0.007 ve P=0.008). PADDICKCI, PTV1 ve PTV2 ortalama değerleri, 3BKRT planlarının IMRT planlarından önemli ölçüde daha kötü olduğunu ortaya koydu (sırasıyla, P = 0.011 ve P=0.009). PTV1 için, CI değerlendirmesine göre 9IMRT planı daha iyi iken, TCP değerlendirmesinde sonuç 7IMRT planı lehine bulunmuştur. Mesane ve rektum için en iyi plan 7IMRT bulunmuştur. İnce barsak için 195 cc hacmin aldığı doz 3BKRT’de en az iyi iken, NTCP ve COSI değerlendirmesinde sonuç 5IMRT lehine bulunmuştur. Normal doku için reçete edilen dozun yarısını alan en düşük hacim hem DVH hem de COSI değerlendirmesinde 7IMRT için bulunmuştur (sırasıyla; %5.7 ve 0.62).
SONUÇ: Çalışmada, RTOGCIPTV1 için en iyi tekniğin 3BKRT olarak bulunması değerlendirmede hataya yol açmaktadır. Bu da çoklu PTV tanımlamalarında bu indeksin gerçekle bağdaşmadığını göstermektedir. Diğer bir indeks olan PADDICKCI, hem PTV hem de PTV yakınlarındaki organları dikkate alır. Fakat bu indeks, SIB planlarının değerlendirmesinde ayrıca bir denkleme gerek duymaktadır. Bu nedenle, TCP ve NTCP radyobiyolojik değerlendirme parametrelerini, birden fazla plan arasından uygulanabilir olanını seçmek için önemli araçlar olarak görüyor ve kullanılmasını öneriyoruz.

References

  • Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2014, National Cancer Institute.
  • Grossmann M, Wittert G. Androgens, diabetes and prostate cancer. Endocr Relat Cancer 2012; 19:47–62.
  • Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39:977–983.
  • Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. Engl J Med 2000; 343:78–84.
  • Rodriguez C, Patel AV, Mondul AM, Jacobs EJ, Thun MJ, Calle EE. Diabetes and risk of prostate cancer in a prospective cohort of US men. Am J Epidemiol 2005; 161:147–152.
  • Gunderson LL (Editör) and Tepper JE . Prostate cancer. In:Clinical radiation oncology. 4th edition USA. Elsevier; 2016:1038-1095.
  • Lips IM, van der Heide UA, Haustermans K, et al. Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 2011; 12:255.
  • Semerjian A, Pavlovich CP. Extraperitoneal robot-assisted radical prostatectomy: indications, technique and outcomes. Curr Urol Rep 2017;18:42.
  • Panje CM, Dal PA, Zilli T, et al. Consensus and differences in primary radiotherapy for localized and locally advanced prostate cancer in Switzerland: a survey on patterns of practice. Strahlenther Onkol 2015; 191:778–786.
  • Hocht S, Aebersold DM, Albrecht C, et al. Hypofractionated radiotherapy for localized prostate cancer. Strahlenther Onkol 2017; 193:1–12.
  • Fonteyne V, Villeirs G, Speleers B, et al. Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008; 72:799–807.
  • Nutting CM, Convery DJ, Cosgrove VP, et al. Reduction of small and large bowel irradiation using an optimised intensity modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 2000; 48:649–656.
  • Cavey ML, Bayouth JE, Colman M, Endres EJ and Sanguineti G. IMRT to escalate the dose to the prostate while treating the pelvic nodes. Strahlenther Onkol 2005; 181:431–441.
  • Alongi F, Fiorino C, Cozzarini C, Broggi S, Perna P, Cattaneo GM et al. IMRT significantly reduces acute toxicity of whole-pelvis irradiation in patients treated with post-operative adjuvant or salvage radiotherapy after radical prostatectomy. Radiother Oncol 2009; 93:207–212.
  • Guerrero UT, Khoo V, Staffurth J, Norman A, Buffa F, Jackson A et al. Intensity-modulated radiotherapy allows escalation of the radiation dose to the pelvic lymph nodes in patients with locally advanced prostate cancer: preliminary results of a phase I dose escalation study. Clin Oncol (R. Coll. Radiol.) 2010; 22:236–244.
  • Deville C, Vapiwala N, Hwang WT, Lin H, Ad VB, Tochner Z, et al. Comparative toxicity and dosimetric profile of whole-pelvis versus prostate bed-only intensity-modulated radiation therapy after prostatectomy. Int. J. Radiat Oncol Biol Phys 2012; 82:1389–1396.
  • Arcangeli S, Saracino B, Petrongari MG, Gomellini S, Marzi S, Landoni V et al. Analysis of toxicity in patients with high risk prostate cancer treated with intensity-modulated pelvic radiation therapy and simultaneous integrated dose escalation to prostate area. 2007; Radiother Oncol 84:148–155.
  • Anshuma B, Rakesh K, Narendra K, Arun S, Suresh S. Feasibility of Simultaneous Integrated Boost Intensity Modulated Radiotherapy treatment plans in patients with localized carcinoma prostate. Clinical Cancer investigation Journal 2012; (1):4;2016-211.
  • International Commission of Radiation Units and Measurements. ICRU report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). J ICRU 2010;10(1):1–106.
  • Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993;27(5):1231–9.
  • Alfonso JC, Herrero MA, Núñez L. A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans. Radiat Oncol 2015;10:263.
  • Moore KL, Brame RS, Low DA, Mutic S. Quantitative metrics for assessing plan quality. In: Seminars in radiation oncology 2012;22(1): 62-9.
  • Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys 2006;64(2):333–42.
  • Menhel J, Levin D, Alezra D, Symon Z, Pfeffer R. Assessing the quality of conformal treatment planning: a new tool for quantitative comparison. Phys Med Biol; 2006; 51(20):5363.
  • Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 2000; 3(93):219–222.
  • Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiologica Oncology 1984; 23:379-91.
  • Webb S, Nahum AE. A model for calculating tumour control probability in radiotherapy including the effects of inkomogeneous distributions of dose and clonogenic cell density. Phy Med Biol 1993; 38:652-66.
  • Nahum AE and Tait DM. Maximising control by customized dose prescription for pelvic tumors. Advanced Radiation Therapy: Tumour response monitoring and treatment planning, ed Breit A. (Heidelberg:Springer) 1992; 425-31.
  • Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res 1985;104(2s):13–19.
  • Burman C, Kutcher G, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991;21(1):123–35.
  • Tomé WA. and Fowler JF. On cold spots in tumor subvolumes. Med Phys 2002; 29(7):1590–1598.
  • Stavrev P, Hristov D. Prostate IMRT fractionation strategies: two-phase treatment versus simultaneous integrated boost. Radiol Oncol 2003; 37(2): 115-26.
  • Schlenter M, Berneking V, Krenkel B, et al. Intensity-modulated radiotherapy of prostate cancer with simultaneous integrated boost after molecular imaging with 18F-choline-PET/CT Strahlenther Onkol 2018; 194:638–645.
  • Li X, Alber M , Deasy J, et al. The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM. Medical Physics 2012; 39(3): 1386–1410.
  • Ling CC, Li XA. Over the next decade the success of radiation treatment planning will be judged by the immediate biological response of tumor cells rather than by surrogate measures such as dose maximization and uniformity. Med Phys 2005; 32(7):2189–2192.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Aysun İnal 0000-0002-1647-9787

Evrim Duman 0000-0002-6162-9772

Publication Date April 12, 2021
Acceptance Date April 14, 2020
Published in Issue Year 2021 Volume: 22 Issue: 2

Cite

APA İnal, A., & Duman, E. (2021). PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ. Kocatepe Tıp Dergisi, 22(2), 80-87. https://doi.org/10.18229/kocatepetip.658264
AMA İnal A, Duman E. PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ. KTD. April 2021;22(2):80-87. doi:10.18229/kocatepetip.658264
Chicago İnal, Aysun, and Evrim Duman. “PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ”. Kocatepe Tıp Dergisi 22, no. 2 (April 2021): 80-87. https://doi.org/10.18229/kocatepetip.658264.
EndNote İnal A, Duman E (April 1, 2021) PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ. Kocatepe Tıp Dergisi 22 2 80–87.
IEEE A. İnal and E. Duman, “PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ”, KTD, vol. 22, no. 2, pp. 80–87, 2021, doi: 10.18229/kocatepetip.658264.
ISNAD İnal, Aysun - Duman, Evrim. “PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ”. Kocatepe Tıp Dergisi 22/2 (April 2021), 80-87. https://doi.org/10.18229/kocatepetip.658264.
JAMA İnal A, Duman E. PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ. KTD. 2021;22:80–87.
MLA İnal, Aysun and Evrim Duman. “PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ”. Kocatepe Tıp Dergisi, vol. 22, no. 2, 2021, pp. 80-87, doi:10.18229/kocatepetip.658264.
Vancouver İnal A, Duman E. PROSTAT KANSERİNDE PELVİK YOĞUNLUK AYARLI RADYASYON TEDAVİSİ VE EŞ ZAMANLI EK DOZ TEDAVİ PLANLAMALARINDA DOZİMETRİK PARAMETRELERİN DEĞERLENDİRİLMESİ. KTD. 2021;22(2):80-7.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.