EFFECTIVENESS OF FRACTURE-END REGENERATION OR EXTRACORPOREAL SHOCK WAVE THERAPY IN DELAY OF TIBIAL UNION: EXPERIMENTAL STUDY
Year 2023,
Volume: 24 Issue: 2, 228 - 233, 05.04.2023
Murat Kaya
,
Mert Ciftdemir
,
Cem Copuroglu
,
Mert Özcan
Abstract
OBJECTIVE: The purpose of this present study was to compare the results of fracture regeneration or Extracorporeal Shock Wave Therapy (ESWT) added to the fracture dynamization procedure in the rat tibia delayed union model.
MATERIAL AND METHODS: A total of 30 female Sprague-Dawley Rats were divided into three groups. Right tibia transverse diaphyseal fractures were made in all rats. After the intramedullary fixation for delayed fracture union model, the fracture line was distracted with a propylene spacer, which was removed in all groups at the end of the 6th week, and the fracture line was dynamized. Only dynamization was applied to the Control Group (Group 1). The fracture ends were regenerated during dynamization in the fracture-end regeneration group (Group 2). In the ESWT group (Group 3), 15 kV 500 shock waves were applied at the 24th hour of dynamization. After the sacrification at the end of the 12th week, all right tibiae were taken for radiological and histopathological examinations.
RESULTS: Radiological and histopathological union scores were found to be significantly higher in Group 2 and Group 3 than in the Control Group (P=0.001). No significant differences were detected between Group 2 and Group 3 in terms of radiological union scores (P=0.254). Histopathological scoring was significantly higher in Group 3 than in Group 2 (P=0.001).
CONCLUSIONS: The addition of fracture-end regeneration or ESWT to dynamization in the rat tibia delayed union model allowed us to obtain better radiological and histopathological results when compared to the dynamization group alone. A clinical comparative study will contribute to the literature.
References
- 1. Zümrüt M, Acil Servise Başvuran Çocuklarda Kırıkların Epidemiyolojik Değerlendirmesi. Kocatepe Tıp Dergisi Kocatepe Medical Journal. 2014:15;142–8.
- 2. Tay WH, DeSteiger R, Richardson M, et al. Health outcomes of delayed union and nonunion of femoral and tibial shaft fractures. Injury. 2014:45;1653–8.
- 3. Haffner N, Antonic V, Smolen D, et al. Extracorporeal shockwave therapy (ESWT) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury. 2016:47;1506–13.
- 4. Babhulkar SS, Pande K, Babhulkar S. Nonunion of the diaphysis of long bones. Clinical Orthopaedics and Related Research. 2005:431;50–6.
- 5. Kanakaris NK, Giannoudis PV. The health economics of the treatment of long-bone non-unions. Injury. 2007:38;77–84.
- 6. Akkaya S, Nazallı M, Kılıç A, Bir F. Cefazolin-sodium has no adverse effect on fracture healing in an experimental rabbit model. Eklem Hastalik Cerrahisi. 2012:23;44–8.
- 7. Park H, Hwang JH, Kwon YU, Kim HW. Osteosynthesis in Situ for Lateral Condyle Nonunion in Children. Journal of Pediatric Orthopaedics. 2015:35;334–40.
- 8. Gebauer D, Mayr E, Orthner E, Ryaby JP. Low-intensity pulsed ultrasound: Effects on nonunions. Ultrasound in Medicine & Biology. 2005:31;1391–402.
- 9. Alkhawashki HMI. Shock wave therapy of fracture nonunion. Injury. 2015:46;2248–52.
- 10. Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V. First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves. The Journal of urology. 2017:197;160–3.
- 11. Wang CJ, Cheng JH, Huang CC, et al. Extracorporeal shockwave therapy for avascular necrosis of femoral head. International Journal of Surgery. 2015:24;184–7.
- 12. Pakos E, Gkiatas I, Rakkas G, et al. Calcific deposit needling in combination with extracorporeal shock wave therapy (ESWT): A proposed treatment for supraspinatus calcified tendinopathy. SICOT-J. 2018:4;45.
- 13. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010;24(3):133-141.
- 14. Alvarez RG, Cincere B, Channappa C, et al. Extracorporeal shock wave treatment of non-or delayed union of proximal metatarsal fractures. Foot and Ankle International. 2011:32;746–54.
- 15. Garcia P, Holstein JH, Maier S, et al. Development of a Reliable Non-Union Model in Mice. Journal of Surgical Research. 2008:147;84–91.
- 16. Orhan Z, Ozturan K, Guven A, Cam K. The effect of extracorporeal shock waves on a rat model of injury to tendo Achillis. Journal of Bone and Joint Surgery - Series B. 2004:86;613–8.
- 17. Tawonsawatruk T, Hamilton DF, Simpson AH. Validation of the use of radiographic fracture-healing scores in a small animal model. Journal of Orthopaedic Research. 2014:32;1117–9.
- 18. Kloefkorn HE, Allen KD. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat. Connective Tissue Research.
2017:58;373–85.
- 19. Atay T, Aydoğan FA, Kırdemir V, et al. Femur Diafiz Kırıklarında Genişleyebilir İntramedüller Çivi Sonuçlarımız. Kocatepe Medical Journal. 2008:9;11–5.
- 20. Vaughn J, Gotha H, Cohen E, et al. Nail Dynamization for Delayed Union and Nonunion in Femur and Tibia Fractures. Orthopedics. 2016:39;1117–23.
- 21. Claes L, Blakytny R, Besse J, et al. Late Dynamization by Reduced Fixation Stiffness Enhances Fracture Healing in a Rat Femoral Osteotomy Model. Journal of Orthopaedic Trauma. 2011:25;169–74.
- 22. Ishiguro T, Itoh Y, Yabe Y, Hashizume N. Extension block with Kirschner wire for fracture dislocation of the distal interphalangeal joint. Techniques in hand & upper Extremity Surgery. 1997:1;1(2):95-102.
- 23. Park H, Hwang JH, Kwon YU, Kim HW. Osteosynthesis in Situ for Lateral Condyle Nonunion in Children. Journal of Pediatric Orthopaedics. 2015:35;334–40.
- 24. Ramoutar DN, Rodrigues J, Quah C, Boulton C, Moran CG. Judet decortication and compression plate fixation of long bone non-union: Is bone graft necessary? Injury. 2011:42;1430–4.
- 25. Mukhopadhaya J, Shivapuri S. Functional outcome after open reduction and internal fixation for symptomatic delayed union and nonunion after fracture clavicle: A series of 31 cases. Indian Journal of
Orthopaedics. 2007:41;209–13.
- 26. Birnbaum K, Wirtz D, Siebert C, Heller K. Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. Archives of Orthopaedic and Trauma Surgery. 2002;122(6):324-30.
- 27. Chen YJ, Wurtz T, Wang CJ, et al. Recruitment of mesenchymal stem cells and expression of TGF-β1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. Journal
of Orthopaedic Research. 2004:22;526-34.
- 28. Wang CJ. Treatment of nonunions of long bone fractures with shock waves. The Journal of the Acoustical Society of America. 2003:114;2463-4.
- 29. Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortopedia, Traumatologia, Rehabilitacja. 2007:9;254–8.
- 30. Willems A, Vanderjagt, Meuffels DE. Extracorporeal Shock Wave Treatment for Delayed Union and Nonunion Fractures: A Systematic Review. Journal of Orthopaedic Trauma. 2019:33;97–103.
KIRIK UÇ TAZELEME VEYA EKSTRAKORPOREAL ŞOK DALGA TEDAVİSİNİN TİBİA KAYNAMA GECİKMESİNDE ETKİNLİĞİ; DENEYSEL ÇALIŞMA
Year 2023,
Volume: 24 Issue: 2, 228 - 233, 05.04.2023
Murat Kaya
,
Mert Ciftdemir
,
Cem Copuroglu
,
Mert Özcan
Abstract
AMAÇ: Bu çalışmanın amacı rat tibia kaynama gecikmesi modelinde, kırık dinamizasyon işlemine eklenen kırık uç tazeleme veya Ekstrakorporeal Şok Dalga Tedavisinin (ESWT) sonuçlarını karşılaştırmaktır.
GEREÇ VE YÖNTEM: 30 dişi Sprague-Dawley cinsi rat üç gruba ayrıldı. Tüm ratlarda sağ tibia transvers diyafizyal kırık oluşturuldu. Gecikmiş kırık kaynaması modeli amaçlı intramedüller tespit sonrası kırık hat propylene spacer ile distrakte edildi. 6. Haftada tüm gruplardaki propylene spacerlar çıkartılarak distraksiyon alanı dinamize edildi. Kontrol grubunda (Grup 1) sadece dinamizasyon uygulandı. Kırık uç tazeleme grubunda (Grup 2) dinamizasyon sırasında kırık uçları tazelendirildi. ESWT grubunda (Grup 3) dinamizasyonun 24. Saatinde 15 kV 500 şok dalgası uygulandı. 12. haftanın sonunda sakrifikasyonun ardından tüm sağ tibialar radyolojik ve histopatolojik incelemeye alındı.
BULGULAR: Radyolojik ve histopatolojik kaynama skorları Grup 2 ve Grup 3’te kontrol grubuna göre anlamlı derecede yüksekti (P=0.001). Grup 2 ve Grup 3 arasında radyolojik kaynama skoru açısından anlamlı farklılık yoktu (P=0.254). Grup 3’te histopatolojik skorlama Grup 2’ye göre anlamlı derecede yüksekti (P=0.001).
SONUÇ: Rat tibia gecikmiş kaynama modelinde dinamizasyona, kırık uç tazeleme veya ESWT eklenmesi sadece dinamizasyon uygulanan gruba göre daha iyi radyolojik ve histopatolojik sonuçlar elde etmemizi sağlamıştır. Klinik karşılaştırmalı bir çalışma literatür açısından katkı sağlayacaktır.
References
- 1. Zümrüt M, Acil Servise Başvuran Çocuklarda Kırıkların Epidemiyolojik Değerlendirmesi. Kocatepe Tıp Dergisi Kocatepe Medical Journal. 2014:15;142–8.
- 2. Tay WH, DeSteiger R, Richardson M, et al. Health outcomes of delayed union and nonunion of femoral and tibial shaft fractures. Injury. 2014:45;1653–8.
- 3. Haffner N, Antonic V, Smolen D, et al. Extracorporeal shockwave therapy (ESWT) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury. 2016:47;1506–13.
- 4. Babhulkar SS, Pande K, Babhulkar S. Nonunion of the diaphysis of long bones. Clinical Orthopaedics and Related Research. 2005:431;50–6.
- 5. Kanakaris NK, Giannoudis PV. The health economics of the treatment of long-bone non-unions. Injury. 2007:38;77–84.
- 6. Akkaya S, Nazallı M, Kılıç A, Bir F. Cefazolin-sodium has no adverse effect on fracture healing in an experimental rabbit model. Eklem Hastalik Cerrahisi. 2012:23;44–8.
- 7. Park H, Hwang JH, Kwon YU, Kim HW. Osteosynthesis in Situ for Lateral Condyle Nonunion in Children. Journal of Pediatric Orthopaedics. 2015:35;334–40.
- 8. Gebauer D, Mayr E, Orthner E, Ryaby JP. Low-intensity pulsed ultrasound: Effects on nonunions. Ultrasound in Medicine & Biology. 2005:31;1391–402.
- 9. Alkhawashki HMI. Shock wave therapy of fracture nonunion. Injury. 2015:46;2248–52.
- 10. Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V. First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves. The Journal of urology. 2017:197;160–3.
- 11. Wang CJ, Cheng JH, Huang CC, et al. Extracorporeal shockwave therapy for avascular necrosis of femoral head. International Journal of Surgery. 2015:24;184–7.
- 12. Pakos E, Gkiatas I, Rakkas G, et al. Calcific deposit needling in combination with extracorporeal shock wave therapy (ESWT): A proposed treatment for supraspinatus calcified tendinopathy. SICOT-J. 2018:4;45.
- 13. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010;24(3):133-141.
- 14. Alvarez RG, Cincere B, Channappa C, et al. Extracorporeal shock wave treatment of non-or delayed union of proximal metatarsal fractures. Foot and Ankle International. 2011:32;746–54.
- 15. Garcia P, Holstein JH, Maier S, et al. Development of a Reliable Non-Union Model in Mice. Journal of Surgical Research. 2008:147;84–91.
- 16. Orhan Z, Ozturan K, Guven A, Cam K. The effect of extracorporeal shock waves on a rat model of injury to tendo Achillis. Journal of Bone and Joint Surgery - Series B. 2004:86;613–8.
- 17. Tawonsawatruk T, Hamilton DF, Simpson AH. Validation of the use of radiographic fracture-healing scores in a small animal model. Journal of Orthopaedic Research. 2014:32;1117–9.
- 18. Kloefkorn HE, Allen KD. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat. Connective Tissue Research.
2017:58;373–85.
- 19. Atay T, Aydoğan FA, Kırdemir V, et al. Femur Diafiz Kırıklarında Genişleyebilir İntramedüller Çivi Sonuçlarımız. Kocatepe Medical Journal. 2008:9;11–5.
- 20. Vaughn J, Gotha H, Cohen E, et al. Nail Dynamization for Delayed Union and Nonunion in Femur and Tibia Fractures. Orthopedics. 2016:39;1117–23.
- 21. Claes L, Blakytny R, Besse J, et al. Late Dynamization by Reduced Fixation Stiffness Enhances Fracture Healing in a Rat Femoral Osteotomy Model. Journal of Orthopaedic Trauma. 2011:25;169–74.
- 22. Ishiguro T, Itoh Y, Yabe Y, Hashizume N. Extension block with Kirschner wire for fracture dislocation of the distal interphalangeal joint. Techniques in hand & upper Extremity Surgery. 1997:1;1(2):95-102.
- 23. Park H, Hwang JH, Kwon YU, Kim HW. Osteosynthesis in Situ for Lateral Condyle Nonunion in Children. Journal of Pediatric Orthopaedics. 2015:35;334–40.
- 24. Ramoutar DN, Rodrigues J, Quah C, Boulton C, Moran CG. Judet decortication and compression plate fixation of long bone non-union: Is bone graft necessary? Injury. 2011:42;1430–4.
- 25. Mukhopadhaya J, Shivapuri S. Functional outcome after open reduction and internal fixation for symptomatic delayed union and nonunion after fracture clavicle: A series of 31 cases. Indian Journal of
Orthopaedics. 2007:41;209–13.
- 26. Birnbaum K, Wirtz D, Siebert C, Heller K. Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. Archives of Orthopaedic and Trauma Surgery. 2002;122(6):324-30.
- 27. Chen YJ, Wurtz T, Wang CJ, et al. Recruitment of mesenchymal stem cells and expression of TGF-β1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. Journal
of Orthopaedic Research. 2004:22;526-34.
- 28. Wang CJ. Treatment of nonunions of long bone fractures with shock waves. The Journal of the Acoustical Society of America. 2003:114;2463-4.
- 29. Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortopedia, Traumatologia, Rehabilitacja. 2007:9;254–8.
- 30. Willems A, Vanderjagt, Meuffels DE. Extracorporeal Shock Wave Treatment for Delayed Union and Nonunion Fractures: A Systematic Review. Journal of Orthopaedic Trauma. 2019:33;97–103.