Microstructural and Thermal Characterization of Aluminum Bronzes
Year 2018,
Volume: 1 Issue: 1, 6 - 10, 31.05.2018
Z. Ezel Doğan
Fulya Kahrıman
,
Ş. Hakan Atapek
Abstract
In this
study, microstructures and the solidification characteristics of heat treatable
Cu-Al-Fe-Ni based alloys were investigated. Initial microstructural features of
conventional alloys were examined by microscopical analyzes and not only
martensitic structure but also several kappa phases embedded in copper based
matrix were observed. Then, thermal analyzes were performed in order to reveal
out the solidification sequence under cooling and the findings on the
crystallization were in good agreement with the data reported
earlier.
References
- Kaplan M., Yildiz A. K., 2003. The effects of production methods on the microstructures and mechanical properties of an aluminum bronze. Materials Letters 57, 4402-4411.
- Anantapong J., Uthaisangsuk V., Suranuntchai S., Manonukul A., 2014. Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy. Materials and Design 60, 233-243.
- Wu Z., Cheng Y. F., Liu L., Lv W., Hu W., 2015. Effect of heat treatment on microstructure evolution and erosion-corrosion vbehavior of a nickel-aluminum bronze alloy in chloride solution. Corrosion Science 98, 260-270.
- Li W. S., Wang Z. P., Lu Y., Jin Y. H., Yuan L. H., Wang F., 2006. Mechanical and tribological properties of a novel aluminum bronze material for drawing dies. Wear 261, 155-163.
- Chen R. P., Linag Z. Q., Zhang W. W., Zhang D. T., Luo Z. Q., Li Y. Y., 2007. Effect of heat treatment on microstructure and properties of hot-extruded nickel-aluminum bronze. Transactions of Nonferrous Metals Society of China 17, 1254-1258.
- Copper Development Association, 1992. Equilibrium diagrams, selected copper alloy diagrams illustrating the major types of phase transformation, CDA Publication No 94.
- Al-Hashem A., Riad W., 2002. The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater. Materials Characterization 48, 37-41.
- Lv Y., Wang L., Han Y., Xu X., Lu W., 2015. Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree. Materials Science & Engineering A 643, 17-24.
- Xu X., Lv Y., Hu M., Xiong D., Zhang L., Wang L., Lu W., 2016. Influence of second phases on fatigue crack growth behavior of nickel aluminum bronze. International Journal of Fatigue 82, 579-587.
- Fonlupt S., Bayle B., Delafosse D., Heuze J.L., 2005. Role of second phases in the stress corrosion cracking of a nickel-aluminum bronze in saline water. Corrosion Science 47, 2792-2806.
- Feest E. A., Cook I. A., 2013. Pre-primary phase formation in solidification of nickel-aluminium bronze. Journal of Metals Technology 10, 121-124.
- Cenoz I., 2010. Metallography of aluminium bronze alloy as cast in permanent iron die. Association of Metallurgical Engineers of Serbia, AMES 16, 115-122.
- Pisarek B. P., 2013. Model of Cu-Al-Fe-Ni bronze crystallization. Archives of Foundary Engineering 13, 72-79.
- Brezina P., 1973. Gefögeumwandlungen und mechanische eigenschaften der mehr-aluminiumbronzen vom typ CuAl10Fe5Ni5. Giesserei-Forschung 25, 1-10.
Year 2018,
Volume: 1 Issue: 1, 6 - 10, 31.05.2018
Z. Ezel Doğan
Fulya Kahrıman
,
Ş. Hakan Atapek
References
- Kaplan M., Yildiz A. K., 2003. The effects of production methods on the microstructures and mechanical properties of an aluminum bronze. Materials Letters 57, 4402-4411.
- Anantapong J., Uthaisangsuk V., Suranuntchai S., Manonukul A., 2014. Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy. Materials and Design 60, 233-243.
- Wu Z., Cheng Y. F., Liu L., Lv W., Hu W., 2015. Effect of heat treatment on microstructure evolution and erosion-corrosion vbehavior of a nickel-aluminum bronze alloy in chloride solution. Corrosion Science 98, 260-270.
- Li W. S., Wang Z. P., Lu Y., Jin Y. H., Yuan L. H., Wang F., 2006. Mechanical and tribological properties of a novel aluminum bronze material for drawing dies. Wear 261, 155-163.
- Chen R. P., Linag Z. Q., Zhang W. W., Zhang D. T., Luo Z. Q., Li Y. Y., 2007. Effect of heat treatment on microstructure and properties of hot-extruded nickel-aluminum bronze. Transactions of Nonferrous Metals Society of China 17, 1254-1258.
- Copper Development Association, 1992. Equilibrium diagrams, selected copper alloy diagrams illustrating the major types of phase transformation, CDA Publication No 94.
- Al-Hashem A., Riad W., 2002. The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater. Materials Characterization 48, 37-41.
- Lv Y., Wang L., Han Y., Xu X., Lu W., 2015. Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree. Materials Science & Engineering A 643, 17-24.
- Xu X., Lv Y., Hu M., Xiong D., Zhang L., Wang L., Lu W., 2016. Influence of second phases on fatigue crack growth behavior of nickel aluminum bronze. International Journal of Fatigue 82, 579-587.
- Fonlupt S., Bayle B., Delafosse D., Heuze J.L., 2005. Role of second phases in the stress corrosion cracking of a nickel-aluminum bronze in saline water. Corrosion Science 47, 2792-2806.
- Feest E. A., Cook I. A., 2013. Pre-primary phase formation in solidification of nickel-aluminium bronze. Journal of Metals Technology 10, 121-124.
- Cenoz I., 2010. Metallography of aluminium bronze alloy as cast in permanent iron die. Association of Metallurgical Engineers of Serbia, AMES 16, 115-122.
- Pisarek B. P., 2013. Model of Cu-Al-Fe-Ni bronze crystallization. Archives of Foundary Engineering 13, 72-79.
- Brezina P., 1973. Gefögeumwandlungen und mechanische eigenschaften der mehr-aluminiumbronzen vom typ CuAl10Fe5Ni5. Giesserei-Forschung 25, 1-10.