Research Article
BibTex RIS Cite

Vegetation Changes of Enez (Edirne) During the Late Messinian-Early Zanclean

Year 2020, Volume: 8 Issue: 3, 510 - 521, 03.09.2020
https://doi.org/10.36306/konjes.559303

Abstract

Due to strong wall (exine) of the pollen grains, they can be well-preserved for a longtime in
the sediments. Therefore, palynology is especially a special tool for assessing paleovegetation and
paleoclimate throughout geological history. This study includes the late Miocene-early Pliocene
sediments for pollen analysis. The study area corresponds to Enez Lagoon, located in the Edirne area.
According to Enez pollen data, during the late Messinian (after Messinian Salinity Crisis)-early Zanclean,
the vegetation was mainly dominated by herbs (i.e., Poaceae, Amaranthaceae-Chenopodiaceae,
Asteraceae Asteroideae, Asteraceae Cichorioideae). Mesothermic trees are represented by deciduous
Quercus, Carya, Pterocarya, Zelkova, Fagus, Alnus, Betula, and Liquidambar orientalis. The abundance of
herbaceous plants during the late Miocene-early Pliocene indicates cold and dry climate in the area.

References

  • Akgün, F., Kayseri, M.S., and Akkiraz, M.S. 2007. Palaeoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 56–90.
  • Akkiraz, M.S., Akgün, F., Utescher, T., Bruch, A.A., ve Mosbrugger, V. 2011. Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 276–290.
  • Akkiraz, M.S., Kangal, Ö., Özgen Erdem, N., Büyükmeriç, Y., Doğruöz, C., 2018. Palaeontological evidence and sedimentary facies in a lower Miocene (Aquitanian) succession from the Bingöl minibasin (Sivas Basin), Central Anatolia. Turkish Journal of Earth Sciences, 27, 329–348.
  • Anşin, R., 1982. Endemizm ve Dolu Karadeniz BiiJ-gesinde Yetigen Endemik Bitki Taksonları (Endemism and Endemic Plants of The East Black Sea Region). KÜ. Orman Fakültesi Dergisi 5 (2) Trabzon, Türkiye, 311-326.
  • Armijo, R., Meyer, B., Hubert, A., Barka, A., 1999. Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology, 27, 267–270.
  • Arpe, K., Leroy, S.A.G., Mikolajewicz, U., 2011. A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summergreen tree refugia. Climate of the Past, 7, 91–114.
  • Axelrod, D.I., Al-Shehbaz, I., Raven, P., 1996. History of the modern flora of China. In: Zhang, Aoluo, Wu, Sugong (Eds.), Floristic Characteristics and Diversity of East Asian Plants. In Springer- Verlag, Berlin, pp. 43–55.
  • Biltekin, D., 2010. Vegetation and climate of North Anatolian and North Aegean region since 7 Ma according to pollen analysis. PhD Thesis, Istanbul Thecnical University and University Claude Bernard–Lyon 1, 136 pp.
  • Biltekin, D., Popescu, S.M., Suc, J.P., Quézel, P., Jiménez-Moreno, G., Yavuz, N., ve Çağatay, M.N., 2015. Anatolia: a long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215: 1–22.
  • Biltekin, D., 2018. Palynomorphs from a lacustrine sequence provide evidence for palaeoenvironmental changes during the early Miocene in Central Anatolia, Turkey. Canadian Journal of Earth Sciences, 55, 505–513.
  • Ceylan, S., 2009. Enez (Edirne) İlçesi'nin Turistik Çekicilikleri ve Sürdürülebilir Turizm Açısından Değerlendirilmesi. Ankara Üniversitesi, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi (TÜCAUM), V. Ulusal Coğrafya Sempozyumu (16–17 Ekim 2008), Bildiriler Kitabı, Ankara. s. 403–419.
  • Clauzon, G., Suc, J.-P., Gautier, F., Berger, A., Loutre, M.-F., 1996. Alternate interpretation of the Messinian salinity crisis: Controversy resolved? Geology, 24 (4), 363-366.
  • Clauzon, G., Suc, J.-P., Popescu, S.-M., Marunteanu, M., Rubino, J.-L., Marinescu, F. ve Melinte, M. C., 2005. Influence of the Mediterranean sea-level changes over the Dacic Basin (Eastern Paratethys) in the Late Neogene. The Mediterranean Lago Mare facies deciphered. Basin Research, 17, 437-562.
  • Cour, P., 1974. Nouvelles techniques de détection des flux et de retombées polliniques: etude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 16 (1), 103-141.
  • Ermolli, E.R., 2000. Pollen analysis of the Acerno palaeo-lacustrine succession (Middle Pleistocene, southern Italy). Geological Society, London, Special Publications, 181, 151-159.
  • Fang, J., Wang, Z., Tang, Z. (Eds.), 2011. Atlas of Woody Plants in China. Distribution and Climate vol. 2. Springer (1902 pp.).
  • François, L., Utescher, T., Favre, E., Henrot, A.-J.,Warnant, P., Micheels, A., Erdei, B., Suc, J.-P., Cheddadi, R., Mosbrugger, V., 2011. Modelling Late Miocene vegetation in Europe: results of the CARAIB model and comparison with palaeovegetation data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 359–378.
  • Gong, W., Chen, C., Dobeš, C., Fu, C.X., Koch, M., 2008. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution, 48, 1094–1105.
  • Grimm, E., 1994. TILIA and TILIAGRAPH pollen diagramming program. Illinois State Museum, Springfield, IL
  • Hably, L. ve Kvaček, Z., 1998. Pliocene mesophytic forests surrounding crater lakes in western Hungary. Review of Palaeobotany and Palynology, 101, 257–269.
  • Huang, T.C., 1972. Pollen flora of Taiwan. (Taipei) National Taiwan University, Botany Dept. Press, Taipei, Taiwan.
  • Jiménez-Moreno, G., 2005. Utilización del análisis polínico para la reconstrucción de lavegetación, clima y estimación de paleoaltitudes a lo largo de arco alpino europeo durante el Mioceno (21-8 Ma). Thesis, Univ. Granada and C. Bernard – Lyon 1, 311 p.
  • Jiménez-Moreno, G., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E., Fauquette, S., Suc, J.P., Müller, P., 2005. High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 216 (1-2), 73-97.
  • Jiménez-Moreno, G., Fauquette, S., Suc, J.P., 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Palaeobotany and Palynology, 162, 403-415.
  • Jiménez-Moreno, G., Alçiçek, H., Alçiçek, C.M., van den Hoek Ostende, L., ve Wesselingh, F.P. 2015. Vegetation and climate changes during the late Pliocene and early Pleistocene in SW Anatolia, Turkey. Quaternary Research, 84, 448–456.
  • Kayseri-Özer, M.S. 2014. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodynamica Acta, 26, 122–157.
  • Le Page, B. A., 2003. A new species of Thuja (Cupressaceae) from the Late Cretaceous of Alaska: implications of being evergreen in a polar environment. American Journal of Botany, 90, 167-174.
  • Melinte-Dobrinescu, M. C., Suc, J.-P., Clauzon, G., Popescu, S.-M., Armijo., R., Meyer, B., Biltekin, D., Çağatay, M. N., UcarkuĢ, G., Jouannic, G., Fauquette, S., Çakır, Z., 2009: The Messinian Salinity Crisis in the Dardanelles region: Chronostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 278, 24–39.
  • Nix, H., 1982. Environmental determinants of biogeography and evolution in Terra Australis. In: Barker, W.R., Greenslade, P.J.M. (Eds.), Evolution of the Flora and fauna of Arid Australia. Peacock Publishing, Frewville, 47–66.
  • Popov, S. V., Shcherb, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., Magyar, I., 2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 91–106.
  • Reille, M., 1992. Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie, 543 pp., Marseille, France.
  • Rögl, F., ve Steininger, F. F., 1983. Vom Zerfall der Tethys zu Mediterran uns paratethys. Die neogene Paläogeographie und Palinspastik des zirkum-mediterranean Raumes. Ann. Naturhist. Mus. Wien, 85, A : 135-163.
  • Sakınç, M., Yaltırak, C., Oktay, F. Y., 1999. Palaeogeographical evolution of the Thrace Neogene Basin and the Tethys-Paratethys relations at northwestern Turkey (Thrace). Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 17-40.
  • Sakınç, M., 2007. Trakya Tersiyer‘inin silisleşmiş ağaçları. Proje no: 103Y137. İstanbul Teknik Üniversitesi.
  • Seçmen, Ö., Leblebici, E., 1991. Aquatic flora of Thrace (Turkey). Willdenowia, 20, 53-66. Suc J.P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 5950, 429-432.
  • Suc, J.P.,ve Drivaliari, A., 1991. Transport of bisaccate coniferous fossil pollen grains to coastal sediments: an example from the earliest Pliocene Orb Ria (Languedoc, Southern France). Review of Palaeobotany and Palynology, 70, 247–253.
  • Traverse, A., 1988. Paleopalynology. Allen and Unwin, Boston, MA Üçbaş Durak, S.D., ve Akkiraz, M.S. 2016. Late Oligocene–Early Miocene palaeoecology based on pollen data from the Kalkım-Gönen Basin (Northwest Turkey). Geodynamica Acta, 28, 295–310.
  • Wang, C.W., 1961. The forests of China with a survey of grassland and desert vegetation.Maria Moors Cabot Fundation, vol. 5. Harvard University, Cambridge, Massachussets.
  • Yahyaoğlu, Z., Demirci, A., Genç, M., 1991. Relikt (Paleo-endemik) Bir Tür: Doğu Ladini (Picea orientalis (L.) Link.). Bildiri, 1. Uluslararası Çevre Koruma Sempozyumu, 8 Haziran 1991, 2. Cilt, Ed. Ayvaz, Z., Ege Üniversitesi, İzmir, Türkiye, 769-779.
  • Yavuz Işık, N., 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia, Geobios, Volume 40, Issue 5, 701–708.
  • Yavuz Işık, N., 2008. Vegetational and climatic investigations in the Early Miocene lacustrine deposits of the Güvem Basin (Galatean Volcanic Province), NW Central Anatolia, Turkey. Review of Palaeobotany and Palynology, 150, 130–139.
  • Yavuz-Işık, N., ve Toprak, V. 2010. Palynostratigraphy and vegetation characteristics of Neogene continental deposits interbedded with the Cappodocia ignimbrites (Central Anatolia, Turkey). International Journal of Earth Sciences, 99, 1887–1897.
  • Yavuz, N., Culha, G., Demirer, S.S., Utescher, T.,ve Aydın, A. 2017. Pollen, ostracod and stable isotope records of palaeoenvironment and climate: Upper Miocene and Pliocene of the Çankırı Basin (Central Anatolia, Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 149–165.

GEÇ MESİNİYEN-ERKEN ZANKLEYAN DÖNEMİNDE ENEZ (EDİRNE) YÖRESİNİN BİTKİ ÖRTÜSÜNDEKİ DEĞİŞİMLER

Year 2020, Volume: 8 Issue: 3, 510 - 521, 03.09.2020
https://doi.org/10.36306/konjes.559303

Abstract

Polen taneleri eksin olarak adlandırılan dış duvarının dayanıklı olması nedeniyle tortullar içerisinde
çok iyi muhafaza edilmektedir. Bu nedenle polenler jeolojik zaman boyunca meydana gelen vejetasyon
ve iklim değişimlerini tayin etmede önemli bir araçtır. Bu çalışma geç Miyosen-erken Pliyosen yaşlı
tortullarda yapılan polen analizlerinin verilerini içermektedir. Çalışma alanı başlıca Edirne ili’nde yer
alan Enez Lagününü kapsamaktadır. Geç Mesiniyen-erken Zankleyan’da (Mesiniyen Tuzluluk
Krizinden sonra), Enez polen verileri başlıca otsul bitki ekosistemleri (örneğin; Poaceae,
AmaranthaceaeChenopodiaceae, Asteraceae Asteroideae, Asteraceae Cichorioideae) ile temsil
edildiğini göstermektedir. Gölü çevreleyen yakın mesafede ise mezotermik ağaçlar yaprağını döken
Quercus, Carya, Pterocarya, Zelkova, Fagus, Alnus, Betula, Liquidambar orientalis gibi bitkilerden
oluşmaktadır. Geç Miyosen-erken Pliyosen’de Enez lagününde görülen otsu bitkilerdeki artış, bölgede
soğuk ve kurak bir iklimin varlığına işaret etmektedir.

References

  • Akgün, F., Kayseri, M.S., and Akkiraz, M.S. 2007. Palaeoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 56–90.
  • Akkiraz, M.S., Akgün, F., Utescher, T., Bruch, A.A., ve Mosbrugger, V. 2011. Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 276–290.
  • Akkiraz, M.S., Kangal, Ö., Özgen Erdem, N., Büyükmeriç, Y., Doğruöz, C., 2018. Palaeontological evidence and sedimentary facies in a lower Miocene (Aquitanian) succession from the Bingöl minibasin (Sivas Basin), Central Anatolia. Turkish Journal of Earth Sciences, 27, 329–348.
  • Anşin, R., 1982. Endemizm ve Dolu Karadeniz BiiJ-gesinde Yetigen Endemik Bitki Taksonları (Endemism and Endemic Plants of The East Black Sea Region). KÜ. Orman Fakültesi Dergisi 5 (2) Trabzon, Türkiye, 311-326.
  • Armijo, R., Meyer, B., Hubert, A., Barka, A., 1999. Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology, 27, 267–270.
  • Arpe, K., Leroy, S.A.G., Mikolajewicz, U., 2011. A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summergreen tree refugia. Climate of the Past, 7, 91–114.
  • Axelrod, D.I., Al-Shehbaz, I., Raven, P., 1996. History of the modern flora of China. In: Zhang, Aoluo, Wu, Sugong (Eds.), Floristic Characteristics and Diversity of East Asian Plants. In Springer- Verlag, Berlin, pp. 43–55.
  • Biltekin, D., 2010. Vegetation and climate of North Anatolian and North Aegean region since 7 Ma according to pollen analysis. PhD Thesis, Istanbul Thecnical University and University Claude Bernard–Lyon 1, 136 pp.
  • Biltekin, D., Popescu, S.M., Suc, J.P., Quézel, P., Jiménez-Moreno, G., Yavuz, N., ve Çağatay, M.N., 2015. Anatolia: a long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215: 1–22.
  • Biltekin, D., 2018. Palynomorphs from a lacustrine sequence provide evidence for palaeoenvironmental changes during the early Miocene in Central Anatolia, Turkey. Canadian Journal of Earth Sciences, 55, 505–513.
  • Ceylan, S., 2009. Enez (Edirne) İlçesi'nin Turistik Çekicilikleri ve Sürdürülebilir Turizm Açısından Değerlendirilmesi. Ankara Üniversitesi, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi (TÜCAUM), V. Ulusal Coğrafya Sempozyumu (16–17 Ekim 2008), Bildiriler Kitabı, Ankara. s. 403–419.
  • Clauzon, G., Suc, J.-P., Gautier, F., Berger, A., Loutre, M.-F., 1996. Alternate interpretation of the Messinian salinity crisis: Controversy resolved? Geology, 24 (4), 363-366.
  • Clauzon, G., Suc, J.-P., Popescu, S.-M., Marunteanu, M., Rubino, J.-L., Marinescu, F. ve Melinte, M. C., 2005. Influence of the Mediterranean sea-level changes over the Dacic Basin (Eastern Paratethys) in the Late Neogene. The Mediterranean Lago Mare facies deciphered. Basin Research, 17, 437-562.
  • Cour, P., 1974. Nouvelles techniques de détection des flux et de retombées polliniques: etude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 16 (1), 103-141.
  • Ermolli, E.R., 2000. Pollen analysis of the Acerno palaeo-lacustrine succession (Middle Pleistocene, southern Italy). Geological Society, London, Special Publications, 181, 151-159.
  • Fang, J., Wang, Z., Tang, Z. (Eds.), 2011. Atlas of Woody Plants in China. Distribution and Climate vol. 2. Springer (1902 pp.).
  • François, L., Utescher, T., Favre, E., Henrot, A.-J.,Warnant, P., Micheels, A., Erdei, B., Suc, J.-P., Cheddadi, R., Mosbrugger, V., 2011. Modelling Late Miocene vegetation in Europe: results of the CARAIB model and comparison with palaeovegetation data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 359–378.
  • Gong, W., Chen, C., Dobeš, C., Fu, C.X., Koch, M., 2008. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution, 48, 1094–1105.
  • Grimm, E., 1994. TILIA and TILIAGRAPH pollen diagramming program. Illinois State Museum, Springfield, IL
  • Hably, L. ve Kvaček, Z., 1998. Pliocene mesophytic forests surrounding crater lakes in western Hungary. Review of Palaeobotany and Palynology, 101, 257–269.
  • Huang, T.C., 1972. Pollen flora of Taiwan. (Taipei) National Taiwan University, Botany Dept. Press, Taipei, Taiwan.
  • Jiménez-Moreno, G., 2005. Utilización del análisis polínico para la reconstrucción de lavegetación, clima y estimación de paleoaltitudes a lo largo de arco alpino europeo durante el Mioceno (21-8 Ma). Thesis, Univ. Granada and C. Bernard – Lyon 1, 311 p.
  • Jiménez-Moreno, G., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E., Fauquette, S., Suc, J.P., Müller, P., 2005. High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 216 (1-2), 73-97.
  • Jiménez-Moreno, G., Fauquette, S., Suc, J.P., 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Palaeobotany and Palynology, 162, 403-415.
  • Jiménez-Moreno, G., Alçiçek, H., Alçiçek, C.M., van den Hoek Ostende, L., ve Wesselingh, F.P. 2015. Vegetation and climate changes during the late Pliocene and early Pleistocene in SW Anatolia, Turkey. Quaternary Research, 84, 448–456.
  • Kayseri-Özer, M.S. 2014. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodynamica Acta, 26, 122–157.
  • Le Page, B. A., 2003. A new species of Thuja (Cupressaceae) from the Late Cretaceous of Alaska: implications of being evergreen in a polar environment. American Journal of Botany, 90, 167-174.
  • Melinte-Dobrinescu, M. C., Suc, J.-P., Clauzon, G., Popescu, S.-M., Armijo., R., Meyer, B., Biltekin, D., Çağatay, M. N., UcarkuĢ, G., Jouannic, G., Fauquette, S., Çakır, Z., 2009: The Messinian Salinity Crisis in the Dardanelles region: Chronostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 278, 24–39.
  • Nix, H., 1982. Environmental determinants of biogeography and evolution in Terra Australis. In: Barker, W.R., Greenslade, P.J.M. (Eds.), Evolution of the Flora and fauna of Arid Australia. Peacock Publishing, Frewville, 47–66.
  • Popov, S. V., Shcherb, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., Magyar, I., 2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 91–106.
  • Reille, M., 1992. Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie, 543 pp., Marseille, France.
  • Rögl, F., ve Steininger, F. F., 1983. Vom Zerfall der Tethys zu Mediterran uns paratethys. Die neogene Paläogeographie und Palinspastik des zirkum-mediterranean Raumes. Ann. Naturhist. Mus. Wien, 85, A : 135-163.
  • Sakınç, M., Yaltırak, C., Oktay, F. Y., 1999. Palaeogeographical evolution of the Thrace Neogene Basin and the Tethys-Paratethys relations at northwestern Turkey (Thrace). Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 17-40.
  • Sakınç, M., 2007. Trakya Tersiyer‘inin silisleşmiş ağaçları. Proje no: 103Y137. İstanbul Teknik Üniversitesi.
  • Seçmen, Ö., Leblebici, E., 1991. Aquatic flora of Thrace (Turkey). Willdenowia, 20, 53-66. Suc J.P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 5950, 429-432.
  • Suc, J.P.,ve Drivaliari, A., 1991. Transport of bisaccate coniferous fossil pollen grains to coastal sediments: an example from the earliest Pliocene Orb Ria (Languedoc, Southern France). Review of Palaeobotany and Palynology, 70, 247–253.
  • Traverse, A., 1988. Paleopalynology. Allen and Unwin, Boston, MA Üçbaş Durak, S.D., ve Akkiraz, M.S. 2016. Late Oligocene–Early Miocene palaeoecology based on pollen data from the Kalkım-Gönen Basin (Northwest Turkey). Geodynamica Acta, 28, 295–310.
  • Wang, C.W., 1961. The forests of China with a survey of grassland and desert vegetation.Maria Moors Cabot Fundation, vol. 5. Harvard University, Cambridge, Massachussets.
  • Yahyaoğlu, Z., Demirci, A., Genç, M., 1991. Relikt (Paleo-endemik) Bir Tür: Doğu Ladini (Picea orientalis (L.) Link.). Bildiri, 1. Uluslararası Çevre Koruma Sempozyumu, 8 Haziran 1991, 2. Cilt, Ed. Ayvaz, Z., Ege Üniversitesi, İzmir, Türkiye, 769-779.
  • Yavuz Işık, N., 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia, Geobios, Volume 40, Issue 5, 701–708.
  • Yavuz Işık, N., 2008. Vegetational and climatic investigations in the Early Miocene lacustrine deposits of the Güvem Basin (Galatean Volcanic Province), NW Central Anatolia, Turkey. Review of Palaeobotany and Palynology, 150, 130–139.
  • Yavuz-Işık, N., ve Toprak, V. 2010. Palynostratigraphy and vegetation characteristics of Neogene continental deposits interbedded with the Cappodocia ignimbrites (Central Anatolia, Turkey). International Journal of Earth Sciences, 99, 1887–1897.
  • Yavuz, N., Culha, G., Demirer, S.S., Utescher, T.,ve Aydın, A. 2017. Pollen, ostracod and stable isotope records of palaeoenvironment and climate: Upper Miocene and Pliocene of the Çankırı Basin (Central Anatolia, Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 149–165.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Demet Biltekin 0000-0003-2976-0321

Namık Çağatay This is me 0000-0003-4677-3802

Publication Date September 3, 2020
Submission Date April 30, 2019
Acceptance Date February 6, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

IEEE D. Biltekin and N. Çağatay, “GEÇ MESİNİYEN-ERKEN ZANKLEYAN DÖNEMİNDE ENEZ (EDİRNE) YÖRESİNİN BİTKİ ÖRTÜSÜNDEKİ DEĞİŞİMLER”, KONJES, vol. 8, no. 3, pp. 510–521, 2020, doi: 10.36306/konjes.559303.