Review
BibTex RIS Cite

TRİBOELEKTRİK NANOJENERATÖRLER İLE ENERJİ HASADI: TEORİK KÖKEN, ÇALIŞMA PRENSİBİ VE ÇALIŞMA MODLARI

Year 2021, Volume: 9 Issue: 1, 232 - 249, 02.03.2021
https://doi.org/10.36306/konjes.745063

Abstract

Cep telefonları ve giyilebilir elektronik aygıtların fonksiyonlarını kesintisiz biçimde yerine getirebilmeleri için gereksinim duyulan enerjinin üretimi ve depolanması, hafif ve esnek elemanlarla sağlanmalıdır. Konvansiyonel piller; gerekli pratiklik, esneklik, konfor ve hafifliği sağlama konusunda yetersizlik kalmaktadır. Bu durum, enerji hasatçılarına yönelen ilginin artmasına neden olmuştur. Enerji hasatçıları, çevresel enerjileri elektrik enerjisine dönüştürürler. Enerji hasatçıları, yalnızca pratiklik sağlamaz aynı zamanda çevre dostu enerji üretimi gerçekleştirir. Enerji hasatçıları, faydalanılan enerji kaynağına ve elektrik enerjisine dönüştürme prensibine göre fotovoltaik, termoelektrik, elektromanyetik, piezoelektrik ve triboelektrik gibi sınıflara ayrılabilir. Triboelektrik enerji hasatçıları sürtünme sırasında oluşan statik elektriği kullanılabilir enerjiye dönüştürür. Triboelektrik enerji hasatçıları ile; dikey temas ayrılma, düzlem içi kaydırma, tek elektrotlu, serbest triboelektik tabaka modları gibi farklı çalışma modlarında enerji elde edebilir. İlk defa 2012 yılında geliştirilen, ardından yoğun biçimde araştırma çalışmalarına konu olan triboelektrik enerji hasatçılar; yüksek güç çıkışları, nanoteknoloji ile uyumları, geniş malzeme ve tasarım seçenekleri, küçük boyutları, hafif ve esnek yapıları, düşük maliyetleri ve giyilebilir aygıtlara eklenebilmeleri ile geleceğin enerji teknolojisi olmaya adaydır.

References

  • Ahmed, A., Hassan, I., El‐Kady, M. F., Radhi, A., Jeong, C. K., Selvaganapathy, P. R., … Kaner, R. B. (2019). Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Advanced Science, 6(24), 1802230. https://doi.org/10.1002/advs.201802230
  • Bai, P., Zhu, G., Lin, Z. H., Jing, Q., Chen, J., Zhang, G., … Wang, Z. L. (2013). Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano, 7(4), 3713–3719. https://doi.org/10.1021/nn4007708
  • Baker, R. R., Dowdall, M. J., & Whittaker, V. P. (1975). The involvement of lysophosphoglycerides in neuro-transmitter release; The composition and turnover of phospholipids of synaptic vesicles of guinea-pig cerebral cortex and torpedo electric organ and the effect of stimulation. Brain Research, 100(3), 629–644. https://doi.org/10.1016/0006-8993(75)90162-6
  • Choi, J., Jung, I., & Kang, C. Y. (2019). A brief review of sound energy harvesting. Nano Energy, 56, 169– 183. https://doi.org/10.1016/j.nanoen.2018.11.036
  • Choi, S., Kwon, S., Kim, H., Kim, W., Kwon, J. H., Lim, M. S., … Choi, K. C. (2017). Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-06733-8
  • Chung, I. J., Kim, W., Jang, W., Park, H. W., Sohn, A., Chung, K. B., … Park, Y. T. (2018). Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators. Journal of Materials Chemistry A, 6(7), 3108–3115. https://doi.org/10.1039/c7ta09876f
  • Crosby, A. J., & Lee, J. (2007). Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polymer Reviews, 47(2), 217–229. https://doi.org/10.1080/15583720701271278
  • Dai, D., & Liu, J. (2014). Hip-mounted electromagnetic generator to harvest energy from human motion. Frontiers in Energy, 8(2), 173–181. https://doi.org/10.1007/s11708-014-0301-2
  • Dong, K., Deng, J., Zi, Y., Wang, Y. C., Xu, C., Zou, H., … Wang, Z. L. (2017). 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors. Advanced Materials, 29(38). https://doi.org/10.1002/adma.201702648
  • Fan, F. R., Tian, Z. Q., & Lin Wang, Z. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328–334. https://doi.org/10.1016/j.nanoen.2012.01.004
  • Fan, K., Cai, M., Liu, H., & Zhang, Y. (2019). Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 169, 356–368. https://doi.org/10.1016/j.energy.2018.12.053
  • Fan, K., Zhang, Y., Liu, H., Cai, M., & Tan, Q. (2019). A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renewable Energy, 138, 292–302. https://doi.org/10.1016/j.renene.2019.01.105
  • Feng, R., Tang, F., Zhang, N., & Wang, X. (2019). Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS Applied Materials and Interfaces, 11(42), 38616–38624. https://doi.org/10.1021/acsami.9b11435
  • Gashti, M. P., Alimohammadi, F., Song, G., & Kiumarsi, A. (2012). Characterization of nanocomposite coatings on textiles : a brief review on Microscopic technology. Current Microscopy Contributions to Advances in Science and Technology, 1424–1437.
  • Guido, F., Qualtieri, A., Algieri, L., Lemma, E. D., De Vittorio, M., & Todaro, M. T. (2016). AlN-based flexible piezoelectric skin for energy harvesting from human motion. Microelectronic Engineering, 159, 174–178. https://doi.org/10.1016/j.mee.2016.03.041
  • Guo, S. (2010). The Eigen Theory of Waves in Piezoelectric Solids. IntechOpen. Retrieved from www.intechopen.com Halim, M. A., Cho, H., Salauddin, M., & Park, J. Y. (2016). A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion. Sensors and Actuators, A: Physical, 249, 23–31. https://doi.org/10.1016/j.sna.2016.08.008
  • Hashemi, S. A., Ramakrishna, S., & Aberle, A. G. (2020). Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy & Environmental Science, 13(3), 685–743.
  • Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2014). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235. https://doi.org/10.1016/j.nanoen.2015.01.038
  • Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  • Hyland, M., Hunter, H., Liu, J., Veety, E., & Vashaee, D. (2016). Wearable thermoelectric generators for human body heat harvesting. Applied Energy, 182, 518–524. https://doi.org/10.1016/j.apenergy.2016.08.150
  • Islam, F., Zubair, A., & Fairuz, N. (2019). Wearable Thermoelectric Nanogenerator Based on Carbon Nanotube for Energy Harvesting. In 2019 IEEE Student Conference on Research and Development, SCOReD 2019 (pp. 253–258). Institute of Electrical and Electronics Engineers Inc.https://doi.org/10.1109/SCORED.2019.8896333
  • Izadgoshasb, I., Lim, Y. Y., Tang, L., Padilla, R. V., Tang, Z. S., & Sedighi, M. (2019). Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Conversion and Management, 184, 559–570. https://doi.org/10.1016/j.enconman.2019.02.001
  • Jeong, E. G., Jeon, Y., Cho, S. H., & Choi, K. C. (2019). Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy and Environmental Science, 12(6), 1878–1889. https://doi.org/10.1039/c8ee03271h
  • Jokic, P., & Magno, M. (2017). Powering smart wearable systems with flexible solar energy harvesting. In Proceedings - IEEE International Symposium on Circuits and Systems. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ISCAS.2017.8050615
  • Jondral, F. K. (2008). From Maxwell’s equations to cognitive radio. In Proceedings of the 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2008. https://doi.org/10.1109/CROWNCOM.2008.4562458
  • Joshi, M., Bhattacharyya, A., & Ali, S. W. (2008). Characterization techniques for nanotechnology applications in textiles. Indian Journal of Fibre and Textile Research, 33(3), 304–317.
  • Jung, W. S., Kang, M. G., Moon, H. G., Baek, S. H., Yoon, S. J., Wang, Z. L., … Kang, C. Y. (2015). High Output Piezo/Triboelectric Hybrid Generator. Scientific Reports, 5(1), 1–6. https://doi.org/10.1038/srep09309
  • Khalid, S., Raouf, I., Khan, A., Kim, N., & Kim, H. S. (2019). A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges. International Journal of Precision Engineering and Manufacturing - Green Technology. https://doi.org/10.1007/s40684-019-00144-y
  • Khushboo, & Azad, P. (2017). Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting. In Proceeding - IEEE International Conference on Computing, Communication and Automation, ICCCA 2017 (Vol. 2017-Janua, pp. 1499–1502). Greater Noida, India: IEEE. https://doi.org/10.1109/CCAA.2017.8230037
  • Kim, H., Kwon, S., Choi, S., & Choi, K. C. (2015). Solution-processed bottom-emitting polymer light- emitting diodes on a textile substrate towards a wearable display. Journal of Information Display, 16(4), 179–184. https://doi.org/10.1080/15980316.2015.1091391
  • Kim, Y. K., Wang, H., & Mahmud, M. S. (2016). Wearable body sensor network for health care applications. In Smart Textiles and Their Applications (pp. 161–184). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100574-3.00009-6
  • Komolafe, A., Torah, R., Nunes-Matos, H., Tudor, M., & Beeby, S. (2019). Integration of temperature sensors in fabrics. In FLEPS 2019 - IEEE International Conference on Flexible and Printable Sensors and Systems, Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/FLEPS.2019.8792294
  • Lancos, L., Thronickle, W., & Ristol, S. (2017). Smart fabrics white paper. Retrieved March 3, 2020, from https://atos.net/wp-content/uploads/2018/01/atos-smartfabric-white-paper-1.pdf
  • Li, K., He, Q., Wang, J., Zhou, Z., & Li, X. (2018). Wearable energy harvesters generating electricity from low-frequency human limb movement. Microsystems and Nanoengineering, 4(1), 1–13. https://doi.org/10.1038/s41378-018-0024-3
  • Lin, Z., Chen, J., & Yang, J. (2016). Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source. Journal of Nanomaterials. https://doi.org/10.1155/2016/5651613
  • Luciano, V., Sardini, E., Serpelloni, M., & Baronio, G. (2014). An energy harvesting converter to power sensorized total human knee prosthesis. Measurement Science and Technology, 25(2), 025702. https://doi.org/10.1088/0957-0233/25/2/025702
  • Mavroidis, C., & Ferreira, A. (2013). Nanorobotics: Past, present, and future. In Nanorobotics: Current Approaches and Techniques (pp. 3–27). Springer New York. https://doi.org/10.1007/978-1-4614-2119- 1_1
  • Maxwell, J. C. (1861a). XXV. On physical lines of force, PART I--The Theory of Molecular Vortices applied to Magnetic Phenomena. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(139), 281–291, 838–849. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/14786446108643033
  • Maxwell, J. C. (1861b). XXV. On physical lines of force, PART I--The Theory of Molecular Vortices applied to Magnetic Phenomena. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(139), 12–24. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/14786446108643033
  • Maxwell, J. C. (2010). On physical lines of force. Philosophical Magazine, 90(SUPPL.1), 11–23. https://doi.org/10.1080/14786431003659180
  • Miller, K. (2011). Triboelectric series. Retrieved April 3, 2020, from http://soft- matter.seas.harvard.edu/index.php/Triboelectric_series
  • Misra, S., & Bera, S. (2018). Introduction to Smart Grid. In N. D. Yilmaz (Ed.), Smart Grid Technology (1st ed., pp. 3–17). Hoboken, MA, USA: Wiley Scrivener. https://doi.org/10.1017/9781108566506.003
  • Miyata, T., Uragami, T., & Nakamae, K. (2002). Biomolecule-sensitive hydrogels. Advanced Drug Delivery Reviews, 54(1), 79–98. https://doi.org/10.1016/S0169-409X(01)00241-1
  • Nie, S., Guo, H., Lu, Y., Zhuo, J., Mo, J., & Wang, Z. L. (2020). Superhydrophobic Cellulose Paper‐Based Triboelectric Nanogenerator for Water Drop Energy Harvesting. Advanced Materials Technologies, 2000454. https://doi.org/10.1002/admt.202000454
  • Ning, C., Tian, L., Zhao, X., Xiang, S., Tang, Y., Liang, E., & Mao, Y. (2018). Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. Journal of Materials Chemistry A, 6(39), 19143–19150. https://doi.org/10.1039/c8ta07784c
  • Pan, S., & Zhang, Z. (2019). Fundamental theories and basic principles of triboelectric effect: A review. Friction. https://doi.org/10.1007/s40544-018-0217-7
  • Pizarro, F., Villavicencio, P., Yunge, D., Rodríguez, M., Hermosilla, G., & Leiva, A. (2018). Easy-to-build textile pressure sensor. Sensors (Switzerland), 18(4). https://doi.org/10.3390/s18041190
  • Pu, X., Hu, W., & Wang, Z. L. (2018). Nanogenerators for smart textiles. In N. D. Yilmaz (Ed.), Smart textiles: wearable nanotechnology (1st ed., pp. 177–210). Hoboken, MA, USA: Wiley Scrivener.
  • Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., … Wang, Z. L. (2015). A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Advanced Materials, 27(15), 2472–2478. https://doi.org/10.1002/adma.201500311
  • Pu, X., Song, W., Liu, M., Sun, C., Du, C., Jiang, C., … Wang, Z. L. (2016). Wearable Power-Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiber-Shaped Dye-Sensitized Solar Cells. Advanced Energy Materials, 6(20). https://doi.org/10.1002/aenm.201601048
  • Qian, F., Xu, T. B., & Zuo, L. (2018). Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 171, 1352–1364. https://doi.org/10.1016/j.enconman.2018.06.069
  • Rajdi, N. N. Z. M., Bakir, A. A., Saleh, S. M., & Wicaksono, D. H. B. (2012). Textile-based Micro Electro Mechanical System (MEMS) accelerometer for pelvic tilt mesurement. In Procedia Engineering (Vol. 41, pp. 532–537). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2012.07.208
  • Schwinger, J., DeRaad, L. L., Milton, K. A., & Tsai, W. (2019). Classical Electrodynamics. Classical Electrodynamics (3rd ed.). New York: Wiley. https://doi.org/10.1201/9780429503542 Scott, A. W. (2005). Understanding Microwaves. New York: Wiley.
  • Sengupta, D. L., & Sarkar, T. K. (2003). Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves. IEEE Antennas and Propagation Magazine, 45(2), 13–19. https://doi.org/10.1109/MAP.2003.1203114
  • Seung, W., Gupta, M. K., Lee, K. Y., Shin, K. S., Lee, J. H., Kim, T. Y., … Kim, S. W. (2015). Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 9(4), 3501–3509. https://doi.org/10.1021/nn507221f
  • Shi, Q., He, T., & Lee, C. (2019). More than energy harvesting – Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851– 871. https://doi.org/10.1016/j.nanoen.2019.01.002
  • Song, Y., Wang, H., Cheng, X., Li, G., Chen, X., Chen, H., … Zhang, H. (2019). High-efficiency self- charging smart bracelet for portable electronics. Nano Energy, 55, 29–36. https://doi.org/10.1016/j.nanoen.2018.10.045
  • Tao, X., & Koncar, V. (2016). Textile electronic circuits based on organic fibrous transistors. In Smart Textiles and Their Applications (pp. 569–598). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100574- 3.00025-4
  • Veligorskyi, O., Khomenko, M., Chakirov, R., & Vagapov, Y. (2018). Performance analysis of a wearable photovoltaic system. In Proceedings - 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, IESES 2018 (Vol. 2018-January, pp. 376–381). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IESES.2018.8349905
  • Wang, S., Lin, L., & Wang, Z. L. (2012). Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters, 12(12), 6339–6346. https://doi.org/10.1021/nl303573d
  • Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., & Wang, Z. L. (2013). Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 13(5), 2226–2233. https://doi.org/10.1021/nl400738p
  • Wang, S., Xie, Y., Niu, S., Lin, L., & Wang, Z. L. (2014). Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non- contact modes. Advanced Materials, 26(18), 2818–2824. https://doi.org/10.1002/adma.201305303
  • Wang, Z. L. (2017). Catch wave power in floating nets. Nature. https://doi.org/10.1038/542159a Wu, C., Kima, T. W., Sung, S., Park, J. H., & Li, F. (2018). Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy, 44, 279–287. https://doi.org/10.1016/j.nanoen.2017.11.080
  • Wu, S., Luk, P. C. K., Li, C., Zhao, X., Jiao, Z., & Shang, Y. (2017). An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant. Applied Energy, 197, 364–374. https://doi.org/10.1016/j.apenergy.2017.04.006
  • Xia, K., Zhu, Z., Zhang, H., Du, C., Fu, J., & Xu, Z. (2019). Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy, 56, 400–410. https://doi.org/10.1016/j.nanoen.2018.11.071
  • Yang, Y., Zhang, H., Lin, Z. H., Zhou, Y. S., Jing, Q., Su, Y., … Wang, Z. L. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222. https://doi.org/10.1021/nn403838y
  • Yilmaz, N. D. (2018a). Introduction to Smart Nanotextiles. In N. D. Yilmaz (Ed.), Smart textiles: wearable nanotechnology (pp. 3–38). Beverly, MA: Wiley Scrivener.
  • Yilmaz, N. D. (2018b). Nanocomposites for Smart Textiles. In N. D. Yılmaz (Ed.), Smart Textiles (1st ed., pp. 211–245). Hoboken, MA, USA: Wiley Scrivener. https://doi.org/10.1002/9781119460367.ch7
  • Yin, D., Chen, Z. Y., Jiang, N. R., Liu, Y. F., Bi, Y. G., Zhang, X. L., … Sun, H. B. (2020). Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Organic Electronics, 76, 105494. https://doi.org/10.1016/j.orgel.2019.105494
  • Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X.-M. (2014). Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310–5336.
  • Zhang, C., & Wang, Z. L. (2018). Triboelectric Nanogenerators (pp. 1335–1376). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-981-10-5945-2_38
  • Zhong, J., Zhang, Y., Zhong, Q., Hu, Q., Hu, B., Wang, Z. L., & Zhou, J. (2014). Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 8(6), 6273–6280. https://doi.org/10.1021/nn501732z
  • Zhou, T., Zhang, C., Han, C. B., Fan, F. R., Tang, W., & Wang, Z. L. (2014). Woven structured triboelectric nanogenerator for wearable devices. ACS Applied Materials and Interfaces, 6(16), 14695–14701. https://doi.org/10.1021/am504110u
  • Zhu, G., Bai, P., Chen, J., & Lin Wang, Z. (2013). Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2(5), 688–692. https://doi.org/10.1016/j.nanoen.2013.08.002
  • Zhu, G., Chen, J., Zhang, T., Jing, Q., & Wang, Z. L. (2014). Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 5(1), 1–9. https://doi.org/10.1038/ncomms4426
  • Zhu, G., Lin, Z. H., Jing, Q., Bai, P., Pan, C., Yang, Y., … Wang, Z. L. (2013). Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letters, 13(2), 847–853. https://doi.org/10.1021/nl4001053
  • Zhu, G., Pan, C., Guo, W., Chen, C. Y., Zhou, Y., Yu, R., & Wang, Z. L. (2012). Triboelectric-generator- driven pulse electrodeposition for micropatterning. Nano Letters, 12(9), 4960–4965. https://doi.org/10.1021/nl302560k
  • Zhu, G., Peng, B., Chen, J., Jing, Q., & Lin Wang, Z. (2014). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126–138. https://doi.org/10.1016/j.nanoen.2014.11.050

Energy Harvesting with Triboelectric Nanogenerators: Theoretical Roots, Working Principles and Working Modes

Year 2021, Volume: 9 Issue: 1, 232 - 249, 02.03.2021
https://doi.org/10.36306/konjes.745063

Abstract

Light-weight and flexible components are needed for energy generation and storage in order for cell phones and wearable electronics to carry out their functions uninterruptedly. Conventional batteries are insufficient in terms of practicability, flexibility, comfort and light weight. This situation causes energy harvesters to attract more interest. Energy harvesters collect energy present in the environment and transfer it into electrical energy which can be used by wearables and other electronics.
Harvesting environmental energy not only provides ease of use, but it also generates environmentally- friendly energy. According to the energy source and conversion principle; energy harvesters can be classified in groups such as photovoltaic, thermoelectric, electromagnetic, piezoelectric, and triboelectric energy harvesters. Triboelectric energy harvesters convert static electricity induced by friction, into usable energy. With triboelectric energy harvesters, energy can be generated using vertical contact separation, in- plane sliding, single electrode and free-standing triboelectric layer modes. Triboelectric energy harvesters were developed for the first time in 2012, and then have been the subject of intense research studies. With their high power output, compliance with nanotechnology, broad material and design choices, small dimensions, light and flexible structure, low cost and adaptability to wearable systems, triboelectric energy harvesters show promise to be the energy technology of the future.

References

  • Ahmed, A., Hassan, I., El‐Kady, M. F., Radhi, A., Jeong, C. K., Selvaganapathy, P. R., … Kaner, R. B. (2019). Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Advanced Science, 6(24), 1802230. https://doi.org/10.1002/advs.201802230
  • Bai, P., Zhu, G., Lin, Z. H., Jing, Q., Chen, J., Zhang, G., … Wang, Z. L. (2013). Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano, 7(4), 3713–3719. https://doi.org/10.1021/nn4007708
  • Baker, R. R., Dowdall, M. J., & Whittaker, V. P. (1975). The involvement of lysophosphoglycerides in neuro-transmitter release; The composition and turnover of phospholipids of synaptic vesicles of guinea-pig cerebral cortex and torpedo electric organ and the effect of stimulation. Brain Research, 100(3), 629–644. https://doi.org/10.1016/0006-8993(75)90162-6
  • Choi, J., Jung, I., & Kang, C. Y. (2019). A brief review of sound energy harvesting. Nano Energy, 56, 169– 183. https://doi.org/10.1016/j.nanoen.2018.11.036
  • Choi, S., Kwon, S., Kim, H., Kim, W., Kwon, J. H., Lim, M. S., … Choi, K. C. (2017). Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-06733-8
  • Chung, I. J., Kim, W., Jang, W., Park, H. W., Sohn, A., Chung, K. B., … Park, Y. T. (2018). Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators. Journal of Materials Chemistry A, 6(7), 3108–3115. https://doi.org/10.1039/c7ta09876f
  • Crosby, A. J., & Lee, J. (2007). Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polymer Reviews, 47(2), 217–229. https://doi.org/10.1080/15583720701271278
  • Dai, D., & Liu, J. (2014). Hip-mounted electromagnetic generator to harvest energy from human motion. Frontiers in Energy, 8(2), 173–181. https://doi.org/10.1007/s11708-014-0301-2
  • Dong, K., Deng, J., Zi, Y., Wang, Y. C., Xu, C., Zou, H., … Wang, Z. L. (2017). 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors. Advanced Materials, 29(38). https://doi.org/10.1002/adma.201702648
  • Fan, F. R., Tian, Z. Q., & Lin Wang, Z. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328–334. https://doi.org/10.1016/j.nanoen.2012.01.004
  • Fan, K., Cai, M., Liu, H., & Zhang, Y. (2019). Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 169, 356–368. https://doi.org/10.1016/j.energy.2018.12.053
  • Fan, K., Zhang, Y., Liu, H., Cai, M., & Tan, Q. (2019). A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renewable Energy, 138, 292–302. https://doi.org/10.1016/j.renene.2019.01.105
  • Feng, R., Tang, F., Zhang, N., & Wang, X. (2019). Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS Applied Materials and Interfaces, 11(42), 38616–38624. https://doi.org/10.1021/acsami.9b11435
  • Gashti, M. P., Alimohammadi, F., Song, G., & Kiumarsi, A. (2012). Characterization of nanocomposite coatings on textiles : a brief review on Microscopic technology. Current Microscopy Contributions to Advances in Science and Technology, 1424–1437.
  • Guido, F., Qualtieri, A., Algieri, L., Lemma, E. D., De Vittorio, M., & Todaro, M. T. (2016). AlN-based flexible piezoelectric skin for energy harvesting from human motion. Microelectronic Engineering, 159, 174–178. https://doi.org/10.1016/j.mee.2016.03.041
  • Guo, S. (2010). The Eigen Theory of Waves in Piezoelectric Solids. IntechOpen. Retrieved from www.intechopen.com Halim, M. A., Cho, H., Salauddin, M., & Park, J. Y. (2016). A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion. Sensors and Actuators, A: Physical, 249, 23–31. https://doi.org/10.1016/j.sna.2016.08.008
  • Hashemi, S. A., Ramakrishna, S., & Aberle, A. G. (2020). Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy & Environmental Science, 13(3), 685–743.
  • Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2014). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235. https://doi.org/10.1016/j.nanoen.2015.01.038
  • Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  • Hyland, M., Hunter, H., Liu, J., Veety, E., & Vashaee, D. (2016). Wearable thermoelectric generators for human body heat harvesting. Applied Energy, 182, 518–524. https://doi.org/10.1016/j.apenergy.2016.08.150
  • Islam, F., Zubair, A., & Fairuz, N. (2019). Wearable Thermoelectric Nanogenerator Based on Carbon Nanotube for Energy Harvesting. In 2019 IEEE Student Conference on Research and Development, SCOReD 2019 (pp. 253–258). Institute of Electrical and Electronics Engineers Inc.https://doi.org/10.1109/SCORED.2019.8896333
  • Izadgoshasb, I., Lim, Y. Y., Tang, L., Padilla, R. V., Tang, Z. S., & Sedighi, M. (2019). Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Conversion and Management, 184, 559–570. https://doi.org/10.1016/j.enconman.2019.02.001
  • Jeong, E. G., Jeon, Y., Cho, S. H., & Choi, K. C. (2019). Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy and Environmental Science, 12(6), 1878–1889. https://doi.org/10.1039/c8ee03271h
  • Jokic, P., & Magno, M. (2017). Powering smart wearable systems with flexible solar energy harvesting. In Proceedings - IEEE International Symposium on Circuits and Systems. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ISCAS.2017.8050615
  • Jondral, F. K. (2008). From Maxwell’s equations to cognitive radio. In Proceedings of the 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2008. https://doi.org/10.1109/CROWNCOM.2008.4562458
  • Joshi, M., Bhattacharyya, A., & Ali, S. W. (2008). Characterization techniques for nanotechnology applications in textiles. Indian Journal of Fibre and Textile Research, 33(3), 304–317.
  • Jung, W. S., Kang, M. G., Moon, H. G., Baek, S. H., Yoon, S. J., Wang, Z. L., … Kang, C. Y. (2015). High Output Piezo/Triboelectric Hybrid Generator. Scientific Reports, 5(1), 1–6. https://doi.org/10.1038/srep09309
  • Khalid, S., Raouf, I., Khan, A., Kim, N., & Kim, H. S. (2019). A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges. International Journal of Precision Engineering and Manufacturing - Green Technology. https://doi.org/10.1007/s40684-019-00144-y
  • Khushboo, & Azad, P. (2017). Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting. In Proceeding - IEEE International Conference on Computing, Communication and Automation, ICCCA 2017 (Vol. 2017-Janua, pp. 1499–1502). Greater Noida, India: IEEE. https://doi.org/10.1109/CCAA.2017.8230037
  • Kim, H., Kwon, S., Choi, S., & Choi, K. C. (2015). Solution-processed bottom-emitting polymer light- emitting diodes on a textile substrate towards a wearable display. Journal of Information Display, 16(4), 179–184. https://doi.org/10.1080/15980316.2015.1091391
  • Kim, Y. K., Wang, H., & Mahmud, M. S. (2016). Wearable body sensor network for health care applications. In Smart Textiles and Their Applications (pp. 161–184). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100574-3.00009-6
  • Komolafe, A., Torah, R., Nunes-Matos, H., Tudor, M., & Beeby, S. (2019). Integration of temperature sensors in fabrics. In FLEPS 2019 - IEEE International Conference on Flexible and Printable Sensors and Systems, Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/FLEPS.2019.8792294
  • Lancos, L., Thronickle, W., & Ristol, S. (2017). Smart fabrics white paper. Retrieved March 3, 2020, from https://atos.net/wp-content/uploads/2018/01/atos-smartfabric-white-paper-1.pdf
  • Li, K., He, Q., Wang, J., Zhou, Z., & Li, X. (2018). Wearable energy harvesters generating electricity from low-frequency human limb movement. Microsystems and Nanoengineering, 4(1), 1–13. https://doi.org/10.1038/s41378-018-0024-3
  • Lin, Z., Chen, J., & Yang, J. (2016). Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source. Journal of Nanomaterials. https://doi.org/10.1155/2016/5651613
  • Luciano, V., Sardini, E., Serpelloni, M., & Baronio, G. (2014). An energy harvesting converter to power sensorized total human knee prosthesis. Measurement Science and Technology, 25(2), 025702. https://doi.org/10.1088/0957-0233/25/2/025702
  • Mavroidis, C., & Ferreira, A. (2013). Nanorobotics: Past, present, and future. In Nanorobotics: Current Approaches and Techniques (pp. 3–27). Springer New York. https://doi.org/10.1007/978-1-4614-2119- 1_1
  • Maxwell, J. C. (1861a). XXV. On physical lines of force, PART I--The Theory of Molecular Vortices applied to Magnetic Phenomena. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(139), 281–291, 838–849. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/14786446108643033
  • Maxwell, J. C. (1861b). XXV. On physical lines of force, PART I--The Theory of Molecular Vortices applied to Magnetic Phenomena. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(139), 12–24. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/14786446108643033
  • Maxwell, J. C. (2010). On physical lines of force. Philosophical Magazine, 90(SUPPL.1), 11–23. https://doi.org/10.1080/14786431003659180
  • Miller, K. (2011). Triboelectric series. Retrieved April 3, 2020, from http://soft- matter.seas.harvard.edu/index.php/Triboelectric_series
  • Misra, S., & Bera, S. (2018). Introduction to Smart Grid. In N. D. Yilmaz (Ed.), Smart Grid Technology (1st ed., pp. 3–17). Hoboken, MA, USA: Wiley Scrivener. https://doi.org/10.1017/9781108566506.003
  • Miyata, T., Uragami, T., & Nakamae, K. (2002). Biomolecule-sensitive hydrogels. Advanced Drug Delivery Reviews, 54(1), 79–98. https://doi.org/10.1016/S0169-409X(01)00241-1
  • Nie, S., Guo, H., Lu, Y., Zhuo, J., Mo, J., & Wang, Z. L. (2020). Superhydrophobic Cellulose Paper‐Based Triboelectric Nanogenerator for Water Drop Energy Harvesting. Advanced Materials Technologies, 2000454. https://doi.org/10.1002/admt.202000454
  • Ning, C., Tian, L., Zhao, X., Xiang, S., Tang, Y., Liang, E., & Mao, Y. (2018). Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. Journal of Materials Chemistry A, 6(39), 19143–19150. https://doi.org/10.1039/c8ta07784c
  • Pan, S., & Zhang, Z. (2019). Fundamental theories and basic principles of triboelectric effect: A review. Friction. https://doi.org/10.1007/s40544-018-0217-7
  • Pizarro, F., Villavicencio, P., Yunge, D., Rodríguez, M., Hermosilla, G., & Leiva, A. (2018). Easy-to-build textile pressure sensor. Sensors (Switzerland), 18(4). https://doi.org/10.3390/s18041190
  • Pu, X., Hu, W., & Wang, Z. L. (2018). Nanogenerators for smart textiles. In N. D. Yilmaz (Ed.), Smart textiles: wearable nanotechnology (1st ed., pp. 177–210). Hoboken, MA, USA: Wiley Scrivener.
  • Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., … Wang, Z. L. (2015). A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Advanced Materials, 27(15), 2472–2478. https://doi.org/10.1002/adma.201500311
  • Pu, X., Song, W., Liu, M., Sun, C., Du, C., Jiang, C., … Wang, Z. L. (2016). Wearable Power-Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiber-Shaped Dye-Sensitized Solar Cells. Advanced Energy Materials, 6(20). https://doi.org/10.1002/aenm.201601048
  • Qian, F., Xu, T. B., & Zuo, L. (2018). Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 171, 1352–1364. https://doi.org/10.1016/j.enconman.2018.06.069
  • Rajdi, N. N. Z. M., Bakir, A. A., Saleh, S. M., & Wicaksono, D. H. B. (2012). Textile-based Micro Electro Mechanical System (MEMS) accelerometer for pelvic tilt mesurement. In Procedia Engineering (Vol. 41, pp. 532–537). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2012.07.208
  • Schwinger, J., DeRaad, L. L., Milton, K. A., & Tsai, W. (2019). Classical Electrodynamics. Classical Electrodynamics (3rd ed.). New York: Wiley. https://doi.org/10.1201/9780429503542 Scott, A. W. (2005). Understanding Microwaves. New York: Wiley.
  • Sengupta, D. L., & Sarkar, T. K. (2003). Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves. IEEE Antennas and Propagation Magazine, 45(2), 13–19. https://doi.org/10.1109/MAP.2003.1203114
  • Seung, W., Gupta, M. K., Lee, K. Y., Shin, K. S., Lee, J. H., Kim, T. Y., … Kim, S. W. (2015). Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 9(4), 3501–3509. https://doi.org/10.1021/nn507221f
  • Shi, Q., He, T., & Lee, C. (2019). More than energy harvesting – Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851– 871. https://doi.org/10.1016/j.nanoen.2019.01.002
  • Song, Y., Wang, H., Cheng, X., Li, G., Chen, X., Chen, H., … Zhang, H. (2019). High-efficiency self- charging smart bracelet for portable electronics. Nano Energy, 55, 29–36. https://doi.org/10.1016/j.nanoen.2018.10.045
  • Tao, X., & Koncar, V. (2016). Textile electronic circuits based on organic fibrous transistors. In Smart Textiles and Their Applications (pp. 569–598). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100574- 3.00025-4
  • Veligorskyi, O., Khomenko, M., Chakirov, R., & Vagapov, Y. (2018). Performance analysis of a wearable photovoltaic system. In Proceedings - 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, IESES 2018 (Vol. 2018-January, pp. 376–381). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IESES.2018.8349905
  • Wang, S., Lin, L., & Wang, Z. L. (2012). Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters, 12(12), 6339–6346. https://doi.org/10.1021/nl303573d
  • Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., & Wang, Z. L. (2013). Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 13(5), 2226–2233. https://doi.org/10.1021/nl400738p
  • Wang, S., Xie, Y., Niu, S., Lin, L., & Wang, Z. L. (2014). Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non- contact modes. Advanced Materials, 26(18), 2818–2824. https://doi.org/10.1002/adma.201305303
  • Wang, Z. L. (2017). Catch wave power in floating nets. Nature. https://doi.org/10.1038/542159a Wu, C., Kima, T. W., Sung, S., Park, J. H., & Li, F. (2018). Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy, 44, 279–287. https://doi.org/10.1016/j.nanoen.2017.11.080
  • Wu, S., Luk, P. C. K., Li, C., Zhao, X., Jiao, Z., & Shang, Y. (2017). An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant. Applied Energy, 197, 364–374. https://doi.org/10.1016/j.apenergy.2017.04.006
  • Xia, K., Zhu, Z., Zhang, H., Du, C., Fu, J., & Xu, Z. (2019). Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy, 56, 400–410. https://doi.org/10.1016/j.nanoen.2018.11.071
  • Yang, Y., Zhang, H., Lin, Z. H., Zhou, Y. S., Jing, Q., Su, Y., … Wang, Z. L. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222. https://doi.org/10.1021/nn403838y
  • Yilmaz, N. D. (2018a). Introduction to Smart Nanotextiles. In N. D. Yilmaz (Ed.), Smart textiles: wearable nanotechnology (pp. 3–38). Beverly, MA: Wiley Scrivener.
  • Yilmaz, N. D. (2018b). Nanocomposites for Smart Textiles. In N. D. Yılmaz (Ed.), Smart Textiles (1st ed., pp. 211–245). Hoboken, MA, USA: Wiley Scrivener. https://doi.org/10.1002/9781119460367.ch7
  • Yin, D., Chen, Z. Y., Jiang, N. R., Liu, Y. F., Bi, Y. G., Zhang, X. L., … Sun, H. B. (2020). Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Organic Electronics, 76, 105494. https://doi.org/10.1016/j.orgel.2019.105494
  • Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X.-M. (2014). Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310–5336.
  • Zhang, C., & Wang, Z. L. (2018). Triboelectric Nanogenerators (pp. 1335–1376). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-981-10-5945-2_38
  • Zhong, J., Zhang, Y., Zhong, Q., Hu, Q., Hu, B., Wang, Z. L., & Zhou, J. (2014). Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 8(6), 6273–6280. https://doi.org/10.1021/nn501732z
  • Zhou, T., Zhang, C., Han, C. B., Fan, F. R., Tang, W., & Wang, Z. L. (2014). Woven structured triboelectric nanogenerator for wearable devices. ACS Applied Materials and Interfaces, 6(16), 14695–14701. https://doi.org/10.1021/am504110u
  • Zhu, G., Bai, P., Chen, J., & Lin Wang, Z. (2013). Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2(5), 688–692. https://doi.org/10.1016/j.nanoen.2013.08.002
  • Zhu, G., Chen, J., Zhang, T., Jing, Q., & Wang, Z. L. (2014). Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 5(1), 1–9. https://doi.org/10.1038/ncomms4426
  • Zhu, G., Lin, Z. H., Jing, Q., Bai, P., Pan, C., Yang, Y., … Wang, Z. L. (2013). Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letters, 13(2), 847–853. https://doi.org/10.1021/nl4001053
  • Zhu, G., Pan, C., Guo, W., Chen, C. Y., Zhou, Y., Yu, R., & Wang, Z. L. (2012). Triboelectric-generator- driven pulse electrodeposition for micropatterning. Nano Letters, 12(9), 4960–4965. https://doi.org/10.1021/nl302560k
  • Zhu, G., Peng, B., Chen, J., Jing, Q., & Lin Wang, Z. (2014). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126–138. https://doi.org/10.1016/j.nanoen.2014.11.050
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Nazire Deniz Yilmaz

Publication Date March 2, 2021
Submission Date May 29, 2020
Acceptance Date October 8, 2020
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

IEEE N. D. Yilmaz, “TRİBOELEKTRİK NANOJENERATÖRLER İLE ENERJİ HASADI: TEORİK KÖKEN, ÇALIŞMA PRENSİBİ VE ÇALIŞMA MODLARI”, KONJES, vol. 9, no. 1, pp. 232–249, 2021, doi: 10.36306/konjes.745063.

Cited By