Research Article
BibTex RIS Cite

ZnO konsantrasyonunun organik güneş hücrelerinde verime etkisi

Year 2021, Volume: 9 , 10 - 16, 30.12.2021
https://doi.org/10.36306/konjes.972477

Abstract

Bu çalışmada, sol-jel yöntemi ile sentezlenmiş ZnO molaritesinin P3HT (Poli (3-hekzil tiyofen)):PCBM ((6,6) Fenil-C61-Bütirik asit metil ester) aktif tabakalı güneş hücresinde verime olan etkisi incelenmiş ve 0,1, 0,3 ve 0,5 M değerlerinde çalışılmıştır. Aygıtların verim değerleri, 100 mw/cm2 güneş ışıması altında Keithley 2400 kaynak ölçer cihazı yardımı ile belirlenmiştir. Ayrıca XRD, UV-Vis ve FESEM teknikleri ile karakterizasyon işlemleri gerçekleştirilmiştir. Yapılan çalışmalar sonrasında 0,1 M sentez konsantrasyonunun, en uygun koşul olduğu bulunmuş ve bu şartlarda üretilen aygıt ile %3,09 verime ulaşılabildiği tespit edilmiştir.

References

  • Afzali, M., Mostafavi, A., Shamspur, T., 2020, “Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer”, Organic Electronics, 86, 105907.
  • Biswas, C., Ma, Z., Zhu, X., Kawaharamura, T., Wang, K. L., 2016, “Atmospheric growth of hybrid ZnO thin films for inverted polymer solar cells”, Solar Energy Materials &Solar Cells Cells (Sol. Energ. Mater. Sol. C.), 157, 1048-1056.
  • Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., Snaith, H. J., 2013, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates”, Nature Communications (Nat. Commun), 4, 2761, 1-6.
  • Fanady, B., Song, W., Peng, R., Wu, T., Ge, Z., 2020, “Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material”, Organic Electronics, 76, 105483.
  • Guan, H., Xu, W., Li, X., Peng, H., Feng, Y., Zhang, J., Li, C., 2016, “Implementation of photo thermal annealing on ZnO electron transporting layer for high performance inverted polymer solar cells”, Materials Letters, 163, 69-71.
  • Gui, Z. Z., Liu, X. H., Ming, S. Q., Zhang, J., Y., Xie, Q. M., Chen, T., Wang, H. Q., 2018, “Efficient organic solar cells employing ytterbium ion-doped zinc oxide as cathode transporting layer”, Organic Electronics, 53, 296-302.
  • Hoye, R. L. Z., Munoz-Rojas, D., Iza, D. C., Musselman, K., P., MacManus-Driscoll, J. L., 2013, “High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition”, Solar Energy Materials & Solar Cells (Sol. Energ. Mater. Sol. C.), 116, 197-202.
  • Lattante, S., 2014, “Electron and hole transport layers: Their use in inverted bulk heterojunction polymer solar cells”, Electronics, 3, 1, 132-164.
  • Li, S., Zhu, X., Wang, B., Qiao, Y., Liu, W., Yang, H., Liu, N., Chen, M., Lu, H., Yang, Y., 2018, “Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells”, Nanoscale Research Letters, 13, 210, 1-11.
  • Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., Cao, G., 2012, “Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells”, Advanced Functional Materials (Adv. Funct. Mater.), 22, 10, 2194-2201.
  • Lin, C. C., Tsai, S. K., Chang, M. Y., 2017, “Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells”, Organic Electronics, 43, 218-225.
  • Lin, Z., Chang, J., Jiang, C., Zhang, J., Wu, J., Zhu, C., 2014, “Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers”, RSC Advances, 4, 6646-6651.
  • Ma, Z. S., Wang, Q. K., Li, C., Li, Y. Q., Zhang, D. D., Liu, W., Wang, P., Tang, J. T., 2015, “Efficient inverted polymer solar cells integrated with a compound electron extraction layer”, Optics Communications, 356, 541-545.
  • Pacholski, C., Kornowski, A., Weller, H., 2002, “Self-Assembly of ZnO: From Nanodots to Nanorods”, Angewandte Chemie International Edition (Angew. Chem. Int. Ed.), 41, 7, 1188-1191.
  • Ragoussi, M. E. ve Torres, T., 2015, “New generation solar cells: concepts, trends and perspectives”, Chemical Communications (ChemComm), 51, 3957-3972.
  • Sun, Y., Seo, J. H., Takacs, C. J., Seifter J., Heeger, A., 2011, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer”, Advanced Materials (Adv. Mater.), 23, 1679-1683.
  • Wang, X., Zhang, Z., Qin, J., Shi, W., Liu, Y., Gao, H., Mao, Y., 2017, “Enhanced Photovoltaic Performance of Perovskite Solar Cells Based on Er-Yb Co-doped TiO2 Nanorod Arrays”, Electrochimica Acta, 245, 839-845.
  • Wei, W., Zhang, C., Chen, D., Wang, Z., Zhu, C., Zhang, J., Lu, X., Hao, Y., 2013, “Efficient “Light-soaking”-free Inverted Organic Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Electron Extraction Layers”, ACS Applied Materials & Interfaces (ACS Appl. Mater. Interfaces), 5, 13318-13324.
  • Xia, X., Bian, Z., Huang, C., 2015, “Overcoming the thickness paradox: Systematical optimization of inverted polymer solar cells”, Current Applied Physics, 15, 1364-1369.
  • Zafar, M, Yun, J. Y., Kim, D. H., 2019, “Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer”, Materials Science in Semiconductor Processing, 96, 66-72.
  • Zhu, Y., Yuan, Z., Cui, W., Wu, Z., Sun, Q., Wang, S., Kang, Z., Sun, B., 2014, “A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells”, Journal of Materials Chemistry A, (J. Mater. Chem. A), 2, 1436-1442.

Effect of ZnO Concentration on Efficiency in Organic Solar Cells

Year 2021, Volume: 9 , 10 - 16, 30.12.2021
https://doi.org/10.36306/konjes.972477

Abstract

In this study, the effect of the molarity of ZnO synthesized by the sol-gel method on the efficiency of P3HT (Poly (3-hexyl thiophene)):PCBM ((6,6) Phenyl-C61-Butyric acid methyl ester) active layer solar cell was investigated. It was studied at 0.1, 0.3 and 0.5 M values. The efficiency values of the devices were determined with the Keithley 2400 source meter under 100 mw/cm2 solar radiation. In addition, characterization processes were carried out with XRD, UV-Vis and FESEM techniques. After the studies, it was found that 0.1 M synthesis concentration was the most suitable condition and it was determined that 3.09% efficiency could be reached with the device produced under these conditions.

References

  • Afzali, M., Mostafavi, A., Shamspur, T., 2020, “Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer”, Organic Electronics, 86, 105907.
  • Biswas, C., Ma, Z., Zhu, X., Kawaharamura, T., Wang, K. L., 2016, “Atmospheric growth of hybrid ZnO thin films for inverted polymer solar cells”, Solar Energy Materials &Solar Cells Cells (Sol. Energ. Mater. Sol. C.), 157, 1048-1056.
  • Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., Snaith, H. J., 2013, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates”, Nature Communications (Nat. Commun), 4, 2761, 1-6.
  • Fanady, B., Song, W., Peng, R., Wu, T., Ge, Z., 2020, “Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material”, Organic Electronics, 76, 105483.
  • Guan, H., Xu, W., Li, X., Peng, H., Feng, Y., Zhang, J., Li, C., 2016, “Implementation of photo thermal annealing on ZnO electron transporting layer for high performance inverted polymer solar cells”, Materials Letters, 163, 69-71.
  • Gui, Z. Z., Liu, X. H., Ming, S. Q., Zhang, J., Y., Xie, Q. M., Chen, T., Wang, H. Q., 2018, “Efficient organic solar cells employing ytterbium ion-doped zinc oxide as cathode transporting layer”, Organic Electronics, 53, 296-302.
  • Hoye, R. L. Z., Munoz-Rojas, D., Iza, D. C., Musselman, K., P., MacManus-Driscoll, J. L., 2013, “High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition”, Solar Energy Materials & Solar Cells (Sol. Energ. Mater. Sol. C.), 116, 197-202.
  • Lattante, S., 2014, “Electron and hole transport layers: Their use in inverted bulk heterojunction polymer solar cells”, Electronics, 3, 1, 132-164.
  • Li, S., Zhu, X., Wang, B., Qiao, Y., Liu, W., Yang, H., Liu, N., Chen, M., Lu, H., Yang, Y., 2018, “Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells”, Nanoscale Research Letters, 13, 210, 1-11.
  • Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., Cao, G., 2012, “Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells”, Advanced Functional Materials (Adv. Funct. Mater.), 22, 10, 2194-2201.
  • Lin, C. C., Tsai, S. K., Chang, M. Y., 2017, “Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells”, Organic Electronics, 43, 218-225.
  • Lin, Z., Chang, J., Jiang, C., Zhang, J., Wu, J., Zhu, C., 2014, “Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers”, RSC Advances, 4, 6646-6651.
  • Ma, Z. S., Wang, Q. K., Li, C., Li, Y. Q., Zhang, D. D., Liu, W., Wang, P., Tang, J. T., 2015, “Efficient inverted polymer solar cells integrated with a compound electron extraction layer”, Optics Communications, 356, 541-545.
  • Pacholski, C., Kornowski, A., Weller, H., 2002, “Self-Assembly of ZnO: From Nanodots to Nanorods”, Angewandte Chemie International Edition (Angew. Chem. Int. Ed.), 41, 7, 1188-1191.
  • Ragoussi, M. E. ve Torres, T., 2015, “New generation solar cells: concepts, trends and perspectives”, Chemical Communications (ChemComm), 51, 3957-3972.
  • Sun, Y., Seo, J. H., Takacs, C. J., Seifter J., Heeger, A., 2011, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer”, Advanced Materials (Adv. Mater.), 23, 1679-1683.
  • Wang, X., Zhang, Z., Qin, J., Shi, W., Liu, Y., Gao, H., Mao, Y., 2017, “Enhanced Photovoltaic Performance of Perovskite Solar Cells Based on Er-Yb Co-doped TiO2 Nanorod Arrays”, Electrochimica Acta, 245, 839-845.
  • Wei, W., Zhang, C., Chen, D., Wang, Z., Zhu, C., Zhang, J., Lu, X., Hao, Y., 2013, “Efficient “Light-soaking”-free Inverted Organic Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Electron Extraction Layers”, ACS Applied Materials & Interfaces (ACS Appl. Mater. Interfaces), 5, 13318-13324.
  • Xia, X., Bian, Z., Huang, C., 2015, “Overcoming the thickness paradox: Systematical optimization of inverted polymer solar cells”, Current Applied Physics, 15, 1364-1369.
  • Zafar, M, Yun, J. Y., Kim, D. H., 2019, “Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer”, Materials Science in Semiconductor Processing, 96, 66-72.
  • Zhu, Y., Yuan, Z., Cui, W., Wu, Z., Sun, Q., Wang, S., Kang, Z., Sun, B., 2014, “A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells”, Journal of Materials Chemistry A, (J. Mater. Chem. A), 2, 1436-1442.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Semih Yurtdaş 0000-0002-5556-2196

Mustafa Karaman 0000-0001-8987-4246

Cem Tozlu 0000-0003-4192-5512

Publication Date December 30, 2021
Submission Date July 26, 2021
Acceptance Date October 31, 2021
Published in Issue Year 2021 Volume: 9

Cite

IEEE S. Yurtdaş, M. Karaman, and C. Tozlu, “ZnO konsantrasyonunun organik güneş hücrelerinde verime etkisi”, KONJES, vol. 9, pp. 10–16, 2021, doi: 10.36306/konjes.972477.