KENTSEL HAVA TAŞIMACILIĞINDA KULLANILACAK DİKEY İNİŞ-KALKIŞ KABİLİYETİNE SAHİP BİR HAVA ARACININ KAVRAMSAL TASARIMI VE MENZİL HESABI
Year 2022,
Volume: 10 Issue: 3, 649 - 664, 01.09.2022
Tolunay Dağ
,
Tarık Ünler
,
Engin Hasan Çopur
,
Uğur Çakın
Abstract
Son zamanlarda meydana gelen trafik yoğunluğu ve ulaşım ihtiyacı nedeniyle kentsel hava taşımacılığına ilgi giderek artmaktadır. Birçok firma kentsel hava taşımacılığında kullanılmak üzere araçlar tasarlayarak bu sektöre yön vermek istemektedir. Buna bağlı olarak şehirlerde, hava taksiler ve uçan araç konsept fikirleri yaygınlaşmaktadır. Hem kişisel hem de kamu alanlarında kullanımı yaygınlaşacak olan bu hava araçlarının elektrikli motorlar ile çalışarak karbon salınımını en alt seviyelere taşıması düşünülmektedir. Bu çalışmada şehir içinde yaygın şekilde kullanıma sunulabilecek bir hava aracının tasarımı ve ulaşabileceği maksimum menzil değerinde iyileştirmeler gerçekleştirilmiştir. Tasarlanan araç, şehir içinde hem kargo hem de sağlık alanında güvenli ulaşım olanağı sağlayabilmektedir. Aracın yaklaşık 45 km menzili ve 30 dakika havada kalma süresine sahip olduğu belirlenmiştir. Bu değerler orta ölçekli bir şehirde taşımacılık yapılabilmesi için uygundur.
Supporting Institution
Türk Havacılık ve Uzay Sanayii AŞ ve TÜBİTAK
Thanks
TÜBİTAK 2209-B Üniversite Öğrencileri Sanayiye Yönelik Araştırma Projeleri Desteği projesi ve TUSAŞ Lift Up programı kapsamında yürütülen bu projede desteklerinden ötürü Türkiye Bilimsel ve Teknolojik Araştırma kurumuna ve Türk Havacılık ve Uzay Sanayii AŞ’ye minnettarız.
References
- Afonso, F., Ferreira, A., Ribeiro, I., Lau, F., & Suleman, A. (2021). On the design of environmentally sustainable aircraft for urban air mobility. Transportation Research Part D: Transport and Environment, 91(January). https://doi.org/10.1016/j.trd.2020.102688
- Asmer, L., Pak, H., Prakasha, P. S., Schuchardt, B. I., Weiand, P., Meller, F., Torens, C., Becker, D., Zhu, C., Schweiger, K., Volkert, A., & Jaksche, R. (2021). Urban Air Mobility Use Cases, Missions and Technology Scenarios for the HorizonUAM Project. 1–17. https://doi.org/10.2514/6.2021-3198
- Booz Allen Hamilton. (2018). Final Report Urban Air Mobility (UAM) Market Study. November, 160. https://ntrs.nasa.gov/api/citations/20190001472/downloads/20190001472.pdf
- Federal Aviation Administration. (2020). Urban Air Mobility and Advanced Air Mobility. Içinde United States Department of Transportation. https://www.faa.gov/uas/advanced_operations/urban_air_mobility/
- Fu, M., Rothfeld, R., & Antoniou, C. (2019). Exploring Preferences for Transportation Modes in an Urban Air Mobility Environment: Munich Case Study. Transportation Research Record, 2673(10), 427–442. https://doi.org/10.1177/0361198119843858
- Holden, J., & Goel, N. (2016). Fast-Forwarding to a Future of On-Demand Urban Air Transportation. 1–98. https://www.uber.com/elevate.pdf
- IHS Jane’s. (2014). AeroVironment Wasp III UAV. Jane’s Unmanned Aerial Vehicles and Targets. https://janes.ihs.com/
- Intelligence, E., & Optional, R. (2015). Stalker VXE30.
- Kim, S. H., Padilla, G. E. G., Kim, K. J., & Yu, K. H. (2020). Flight Path Planning for a Solar Powered UAV in Wind Fields Using Direct Collocation. IEEE Transactions on Aerospace and Electronic Systems, 56(2), 1094–1105. https://doi.org/10.1109/TAES.2019.2926654
- KNBS. (2021). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. 6.
- LEBLEBİCİOĞLU, K. (2016). Görev Amaçlı Döner Kanat İHA Tasarımı. Tubitak Project, 35–36.
- Liu, S., Bai, J., & Wang, C. (2021). Energy acquisition of a small solar UAV using dynamic soaring. Aeronautical Journal, 125(1283), 60–86. https://doi.org/10.1017/aer.2020.79
- Lockheed Martin. (2015). Desert Hawk Datasheet. © 2015 Lockheed Martin Corporation PIRA# OWG201504006, 4. http://www.lockheedmartin.co.uk/content/dam/lockheed/data/ms2/documents/Desert_Hawk_Brochure.pdf
- Nasir, R. E. M., Tajuddin, N. F., Muta’ali, A. B. A., Kuntjoro, W., Wisnoe, W., & Romli, F. I. (2021). The Effect of Inboard and Outboard Wing Sweep Angles to Lift-to-Drag Ratio of a Compound Wing-Body Using Panel Code. Journal of Aeronautics, Astronautics and Aviation , 53(2), 155–164. https://doi.org/10.6125/JoAAA.202106_53(2).07
- Patterson, M. D., Antcliff, K. R., & Kohlman, L. W. (2018). A proposed approach to studying urban air mobility missions including an initial exploration of mission requirements. Annual Forum Proceedings - AHS International, 2018-May.
- Rothfeld, R., Straubinger, A., Fu, M., Al Haddad, C., & Antoniou, C. (2019). Urban air mobility. Içinde Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815018-4.00013-9
- Schuchardt, B. I., Becker, D., Becker, R.-G., End, A., Gerz, T., Meller, F., Metz, I. C., Niklaß, M., Pak, H., Schier-Morgenthal, S., Schweiger, K., Shiva Prakasha, P., Sülberg, J. D., Swaid, M., Torens, C., & Zhu, C. (2021). Urban Air Mobility Research at the DLR German Aerospace Center – Getting the HorizonUAM Project Started. 1–12. https://doi.org/10.2514/6.2021-3197
- Silva, C., Johnson, W., Antcliff, K. R., & Patterson, M. D. (2018). VTOL urban air mobility concept vehicles for technology development. 2018 Aviation Technology, Integration, and Operations Conference, 1–16. https://doi.org/10.2514/6.2018-3847
- SLANTRANGE. (2015). FireFly6 SL3p. https://www.landviewdrones.com/firefly6sl2p
- Thipphavong, D. P., Apaza, R. D., Barmore, B. E., Battiste, V., Belcastro, C. M., Burian, B. K., Dao, Q. V., Feary, M. S., Go, S., Goodrich, K. H., Homola, J. R., Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., & Verma, S. A. (2018). Urban air mobility airspace integration concepts and considerations. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-3676
- Zhang, T., Zhu, X., Zhou, Z., Wang, R., & Chen, R. (2018). Energy Management of Solar UAV Level Flight. 2018 IEEE International Conference on Prognostics and Health Management, ICPHM 2018, 10–15. https://doi.org/10.1109/ICPHM.2018.8448508.
Conceptual Design and Range Calculation of a Vertical Landing-Takeoff Aircraft to be Used in Urban Air Mobility
Year 2022,
Volume: 10 Issue: 3, 649 - 664, 01.09.2022
Tolunay Dağ
,
Tarık Ünler
,
Engin Hasan Çopur
,
Uğur Çakın
Abstract
Due to the recent traffic density and the need for transportation, interest in urban air mobility is increasing. Many companies want to direct this sector by designing vehicles to be used in urban air mobility. Accordingly, air taxis and flying vehicle concept ideas are becoming widespread in cities. It is thought that these vehicle, which will be used in both personal and public areas, will work with electric motors to bring carbon emissions to the lowest levels. In this study, improvements have been made in the design of an aircraft that can be used widely in the city and in the maximum range it can reach. The designed vehicle can provide safe transportation in the city, both in the field of cargo and health. It has been determined that the vehicle has a range of approximately 45 km and an endurance of 30 minutes. These values are suitable for transportation in a medium-sized city.
References
- Afonso, F., Ferreira, A., Ribeiro, I., Lau, F., & Suleman, A. (2021). On the design of environmentally sustainable aircraft for urban air mobility. Transportation Research Part D: Transport and Environment, 91(January). https://doi.org/10.1016/j.trd.2020.102688
- Asmer, L., Pak, H., Prakasha, P. S., Schuchardt, B. I., Weiand, P., Meller, F., Torens, C., Becker, D., Zhu, C., Schweiger, K., Volkert, A., & Jaksche, R. (2021). Urban Air Mobility Use Cases, Missions and Technology Scenarios for the HorizonUAM Project. 1–17. https://doi.org/10.2514/6.2021-3198
- Booz Allen Hamilton. (2018). Final Report Urban Air Mobility (UAM) Market Study. November, 160. https://ntrs.nasa.gov/api/citations/20190001472/downloads/20190001472.pdf
- Federal Aviation Administration. (2020). Urban Air Mobility and Advanced Air Mobility. Içinde United States Department of Transportation. https://www.faa.gov/uas/advanced_operations/urban_air_mobility/
- Fu, M., Rothfeld, R., & Antoniou, C. (2019). Exploring Preferences for Transportation Modes in an Urban Air Mobility Environment: Munich Case Study. Transportation Research Record, 2673(10), 427–442. https://doi.org/10.1177/0361198119843858
- Holden, J., & Goel, N. (2016). Fast-Forwarding to a Future of On-Demand Urban Air Transportation. 1–98. https://www.uber.com/elevate.pdf
- IHS Jane’s. (2014). AeroVironment Wasp III UAV. Jane’s Unmanned Aerial Vehicles and Targets. https://janes.ihs.com/
- Intelligence, E., & Optional, R. (2015). Stalker VXE30.
- Kim, S. H., Padilla, G. E. G., Kim, K. J., & Yu, K. H. (2020). Flight Path Planning for a Solar Powered UAV in Wind Fields Using Direct Collocation. IEEE Transactions on Aerospace and Electronic Systems, 56(2), 1094–1105. https://doi.org/10.1109/TAES.2019.2926654
- KNBS. (2021). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. 6.
- LEBLEBİCİOĞLU, K. (2016). Görev Amaçlı Döner Kanat İHA Tasarımı. Tubitak Project, 35–36.
- Liu, S., Bai, J., & Wang, C. (2021). Energy acquisition of a small solar UAV using dynamic soaring. Aeronautical Journal, 125(1283), 60–86. https://doi.org/10.1017/aer.2020.79
- Lockheed Martin. (2015). Desert Hawk Datasheet. © 2015 Lockheed Martin Corporation PIRA# OWG201504006, 4. http://www.lockheedmartin.co.uk/content/dam/lockheed/data/ms2/documents/Desert_Hawk_Brochure.pdf
- Nasir, R. E. M., Tajuddin, N. F., Muta’ali, A. B. A., Kuntjoro, W., Wisnoe, W., & Romli, F. I. (2021). The Effect of Inboard and Outboard Wing Sweep Angles to Lift-to-Drag Ratio of a Compound Wing-Body Using Panel Code. Journal of Aeronautics, Astronautics and Aviation , 53(2), 155–164. https://doi.org/10.6125/JoAAA.202106_53(2).07
- Patterson, M. D., Antcliff, K. R., & Kohlman, L. W. (2018). A proposed approach to studying urban air mobility missions including an initial exploration of mission requirements. Annual Forum Proceedings - AHS International, 2018-May.
- Rothfeld, R., Straubinger, A., Fu, M., Al Haddad, C., & Antoniou, C. (2019). Urban air mobility. Içinde Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815018-4.00013-9
- Schuchardt, B. I., Becker, D., Becker, R.-G., End, A., Gerz, T., Meller, F., Metz, I. C., Niklaß, M., Pak, H., Schier-Morgenthal, S., Schweiger, K., Shiva Prakasha, P., Sülberg, J. D., Swaid, M., Torens, C., & Zhu, C. (2021). Urban Air Mobility Research at the DLR German Aerospace Center – Getting the HorizonUAM Project Started. 1–12. https://doi.org/10.2514/6.2021-3197
- Silva, C., Johnson, W., Antcliff, K. R., & Patterson, M. D. (2018). VTOL urban air mobility concept vehicles for technology development. 2018 Aviation Technology, Integration, and Operations Conference, 1–16. https://doi.org/10.2514/6.2018-3847
- SLANTRANGE. (2015). FireFly6 SL3p. https://www.landviewdrones.com/firefly6sl2p
- Thipphavong, D. P., Apaza, R. D., Barmore, B. E., Battiste, V., Belcastro, C. M., Burian, B. K., Dao, Q. V., Feary, M. S., Go, S., Goodrich, K. H., Homola, J. R., Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., & Verma, S. A. (2018). Urban air mobility airspace integration concepts and considerations. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-3676
- Zhang, T., Zhu, X., Zhou, Z., Wang, R., & Chen, R. (2018). Energy Management of Solar UAV Level Flight. 2018 IEEE International Conference on Prognostics and Health Management, ICPHM 2018, 10–15. https://doi.org/10.1109/ICPHM.2018.8448508.