JEOTERMAL ENERJİ SANTRALLERİNİN (JES) PROJELENDİRİLMESİNDE OLUŞMASI MUHTEMEL RİSKLERİN ANALİZ EDİLMESİ
Year 2022,
Volume: 10 Issue: 4, 850 - 863, 03.12.2022
Eray Can
,
Hülya Keskin Çıtıroğlu
,
Deniz Arca
Abstract
Günümüz koşullarında fosil yakıtların hem hızla tükenmeye başlaması hem de maliyetlerinin yüksek olması ve çevresel kaygılar nedenleriyle, enerji üretiminde yenilenebilir enerji kaynaklarına daha hızlı bir yönelim olmaktadır. İnsanoğlu, yirminci yüzyılın başlarından itibaren yenilenebilir enerji kaynaklarından güç üretme yeteneği kazanmış olup, yenilenebilir enerji kaynaklarından biri olan jeotermal enerji günümüzde üzerine çaba harcanan enerji kaynaklarından biri haline gelmiştir. Yenilenebilir ve sürdürülebilir enerji kaynaklarından biri olan jeotermal enerji santrallerinin (JES) projelendirilmesi yapılırken, karşılaşılabilecek olası risklerin belirlenmesi ve bu risklere karşı önlem alınması; planlanan santralin güvenliği, verimi, kullanım ömrü, proje maliyetinin belirlendiği düzeyde kalması ve elektrik enerjisi üretiminde sürdürülebilirliğin sağlanması açılarından olumlu etkilere sahiptir. Bu nedenle bu çalışmada JES kurulumunda veya projelendirilmesinde karşılaşılabilecek hata ve riskler, sırasıyla Hata Türü ve Etkileri Analizi (HTEA), Pareto ve Analitik hiyerarşi prosesi (AHP) sistematiğinde araştırılmış ve sonuçlar karşılaştırılmıştır.
References
- Akın, B., 1998, ISO 9000 Uygulamasında ve işletmelerde hata türü ve etkileri analizi, Bilim Teknik Yayınevi, İstanbul, ss182.
- Aksoy, N., Şişman, M., 2011, “Jeotermal elektrik santralleri proje yönetimi”, X. Ulusal Tesisat Mühendisliği Kongresi, İzmir, ss.291-298, 13-16 Nisan 2011.
- Can, E., 2019, “Analysis of risks that are based on the aerial photography used in photogrammetric monitoring maps for environmental wind power energy plant projects”, Environmental Monitoring and Assessment, Cilt 191, 746, http://doi.org/10.1007/s10661-019-7944-8
- Chin, K. S., Wang, Y. M., Poon Gary Ka, K., Yang, J. B., 2009, “Failure mode and effects analysis using a group-based evidential reasoning approach”, Computers & Operations Research, Cilt 36, ss. 1768–1779, https://doi.org/10.1016/j.cor.2008.05.002
- Feili, H. R, Akar, N., Lotfizadeh, H., Bairampour, M., Nasiri, S., 2013, “Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique”, Energy Conversion and Management, Cilt 72, ss. 69-76. https://doi.org/10.1016/j.enconman.2012.10.027
- Franco, A., Donatini, F., 2017, “Methods for the estimation of the energy stored in geothermal reservoirs”, J. Phys.: Conf. Ser. 796 012025, ss 11, https://doi:10.1088/1742-6596/796/1/012025
- Gökçen, G., Öztürk, H. K., Hepbaşlı, A., 2004, “Geothermal fields suitable for power generation”, Energy Sources, Cilt 26, Sayı 5, ss. 441-451, http://doi.org/10.1080/00908310490429722
- Gürcün, D., Petek, A., 2021, “Jeotermal enerji potansiyelinin SWOT analizi ile değerlendirilmesi: Aydın ili örneği”, Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Cilt 14, Sayı 2, ss. 349–364. http://doi.org/10.25287/ohuiibf.695276.
- Karatop, B., Taşkan, B., Adar, E., Kubat, C., 2021, “Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach”, Computers & Industrial Engineering, Cilt 151, 106958, https://doi.org/10.1016/j.cie.2020.106958
- Koech, D. C., Muchiri, P., Chemweno, P., 2018, “Risk assessment of critical equipment failure mode. A case study of Olkaria 2 geothermal power plant in Kenya”, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684, p-ISSN: 2320-334X, Cilt 15, Sayı 5 Ver. II (Sep.-Oct. 2018), ss. 63-73, http://doi.org/10.9790/1684-1505026373
- Li, Z., Chen, L., 2019, “A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method”, Engineering Applications of Artificial Intelligence, Cilt 77, ss. 136-147, https://doi.org/10.1016/j.engappai.2018.10.005
- Liu, H.-C., Liu, L., Liu, N., 2013, “Risk evaluation approaches in failure mode and effects analysis: A literature review, Expert Systems with Applications, Cilt 40, ss. 828-838, https://doi.org/10.1016/j.eswa.2012.08.010
- Liu, H.-C., Chen X.-Q., You J.-X., Li, Z., 2021, “A new ıntegrated approach for risk evaluation and classification with dynamic expert weights”, IEEE Transactions on Reliability, Cilt 70, Sayı 1, ss. 163-174, https://doi.org/10.1109/TR.2020.2973403.
- Lund, J. W., 1997, “Direct heat utilization of geothermal resources”, Renewable Energy, Cilt 10, ss. 403–408. https://doi.org/10.1016/0960-1481(96)00097-3
- Min, H., 1994, “Location analysis of ınternational consolidation terminal using the AHP”, Journal of Business Logistics, Cilt 15, Sayı 2, ss. 25-44, https://search.library.northwestern.edu/permalink/01NWU_INST/6rv399/cdi_proquest_journals_212603598
- Mutlu, M., Sarı, M., 2017, “Çok kriterli karar verme yöntemleri ve madencilik sektöründe kullanımı”, Bilimsel Madencilik Dergisi, Cilt 56, Sayı 4, ss. 181-196, http://www.mining.org.tr/tr/pub/issue/35230/391953
- Nasruddin, N., Kurniawan, N., Prasetyadi, D., Sherly, 2018, “Critical analysis using FMEA fuzzy logic on geothermal steam turbine system”, AIP Conference Proceedings 1983, 020031. https://doi.org/10.1063/1.5046227
- Özcan, S., 2001, “İstatiksel proses kontrol tekniklerinden pareto analizi ve çimento sanayiinde bir uygulama”, Cumhuriyet Üniversitesi, İktisadi ve İdari Bilimler Dergisi, Cilt 2, Sayı 2, ss. 151-174,
REN21, 2020, “Renewables 2019 global status report”, Renewable Enerji Policy Network for the 21st century Paris, France, ss. 336. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf, ziyaret tarihi:02 Ağustos 2021.
- Saaty, T. L., 1980, The Analytic Hierarchy Process, New York: McGraw Hill, International, Translated to Russian, Portuguese, and Chinese, Revised, Pittsburgh: RWS Publications.
- Saaty, T. L., 2000, Fundamentals of decision making and priority theory. 2. Edition, RWS Publications, Pittsburgh.
- Saaty, T. L., 2013, Mathematical principles of decision making: the complete theory of the analytic hierarchy process, USA: RWS Publications.
- Sarıçalı, G., Kundakcı, N., 2016, “AHP ve Copras yöntemleri ile otel alternatiflerinin değerlendirilmesi”, International Review of Economics and Management, Cilt 4, Sayı 1, ss. 45-66, https://doi.org/10.18825/irem.00736
- Su, X., Deng, Y., Mahadevan, S., Bao, Q., 2012, “An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades”, Engineering Failure Analysis, Cilt 26, ss. 164-174, https://doi.org/10.1016/j.engfailanal.2012.07.009
- Şimşek, Y., 2014, Risk Management Approach And Risk Analysis İn Solar Thermal Energy Projects, M.Sc Thesis, ITU Energy Institute Department of Energy Science and Technology, ss. 106.
- TJD, 2021, “Jeotermal enerji nedir”, Türkiye Jeotermal Derneği http://www.jeotermaldernegi.org.tr/sayfalar-Jeotermal-Enerji-Nedir-, ziyaret tarihi:02 Ağustos 2021.
- Tsai, S.-B., Yu, J., Ma, L., Luo, F., Zhou, J., Chen, Q., Xu, L., 2018, “A study on solving the production process problems of the photovoltaic cell industry”, Renewable and Sustainable Energy Reviews, Cilt 82, ss. 3546–3553. https://doi.org/10.1016/j.rser.2017.10.105
- Vaidya, O. S., Kumar, S., 2006, “Analytic hierarchy process: an overview of applications”, European Journal of Operational Research, Cilt 169, ss. 1–29, https://doi.org/10.1016/j.ejor.2004.04.028
- Wang, Y. M., Chin, K. S., Poon Gary Ka, K., Yang, J. B., 2009, “Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean”, Expert Systems with Applications, Cilt 36, ss. 1195-1207, https://doi.org/10.1016/j.eswa.2007.11.028
- Xiao, N., Huang, H. Z., Li, Y., He, L., Jin, T., 2011, “Multiple failure modes analysis and weighted risk priority number evaluation in FMEA”, Engineering Failure Analysis, Cilt 18, ss. 1162-1170, https://doi.org/10.1016/j.engfailanal.2011.02.004
- Zhang, H-J., Zhou, Y., Gan, Q-H., 2019, “An extended PROMETHEE-II-based risk prioritization method for equipment failures in the geothermal power plant”, International Journal of Fuzzy Systems, Cilt 21, ss. 2490–2509, https://doi.org/10.1007/s40815-019-00679-x
Analysis of Possible Risks in the Project of Geothermal Power Plants (GPP)
Year 2022,
Volume: 10 Issue: 4, 850 - 863, 03.12.2022
Eray Can
,
Hülya Keskin Çıtıroğlu
,
Deniz Arca
Abstract
In today's conditions, there is a faster trend towards renewable energy sources in energy production owing to the quickly consuming of fossil combustibles, their high costs and environmental concerns. Mankind has gained the ability to generate power from sources of renewable energy until now the early of the twentieth century, and geothermal energy has become one of the energy sources on which efforts are made today. During the design of geothermal power plants (GPP), that is one of the sources of sustainable and renewable energy, determining the possible risks that may be encountered and taking precautions against these risks; It has positive effects in terms of safety, efficiency, useful life of the planned power plant, keeping the project cost at the determined level and ensuring sustainability in electrical energy production. Therefore, the failures that may be met in the installation or design of GPP; Failure Mode and Effects Analysis (FMEA), Pareto and Analytical Hierarchy Process (AHP) systematics were searched and their outcomes were matched in this study.
References
- Akın, B., 1998, ISO 9000 Uygulamasında ve işletmelerde hata türü ve etkileri analizi, Bilim Teknik Yayınevi, İstanbul, ss182.
- Aksoy, N., Şişman, M., 2011, “Jeotermal elektrik santralleri proje yönetimi”, X. Ulusal Tesisat Mühendisliği Kongresi, İzmir, ss.291-298, 13-16 Nisan 2011.
- Can, E., 2019, “Analysis of risks that are based on the aerial photography used in photogrammetric monitoring maps for environmental wind power energy plant projects”, Environmental Monitoring and Assessment, Cilt 191, 746, http://doi.org/10.1007/s10661-019-7944-8
- Chin, K. S., Wang, Y. M., Poon Gary Ka, K., Yang, J. B., 2009, “Failure mode and effects analysis using a group-based evidential reasoning approach”, Computers & Operations Research, Cilt 36, ss. 1768–1779, https://doi.org/10.1016/j.cor.2008.05.002
- Feili, H. R, Akar, N., Lotfizadeh, H., Bairampour, M., Nasiri, S., 2013, “Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique”, Energy Conversion and Management, Cilt 72, ss. 69-76. https://doi.org/10.1016/j.enconman.2012.10.027
- Franco, A., Donatini, F., 2017, “Methods for the estimation of the energy stored in geothermal reservoirs”, J. Phys.: Conf. Ser. 796 012025, ss 11, https://doi:10.1088/1742-6596/796/1/012025
- Gökçen, G., Öztürk, H. K., Hepbaşlı, A., 2004, “Geothermal fields suitable for power generation”, Energy Sources, Cilt 26, Sayı 5, ss. 441-451, http://doi.org/10.1080/00908310490429722
- Gürcün, D., Petek, A., 2021, “Jeotermal enerji potansiyelinin SWOT analizi ile değerlendirilmesi: Aydın ili örneği”, Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Cilt 14, Sayı 2, ss. 349–364. http://doi.org/10.25287/ohuiibf.695276.
- Karatop, B., Taşkan, B., Adar, E., Kubat, C., 2021, “Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach”, Computers & Industrial Engineering, Cilt 151, 106958, https://doi.org/10.1016/j.cie.2020.106958
- Koech, D. C., Muchiri, P., Chemweno, P., 2018, “Risk assessment of critical equipment failure mode. A case study of Olkaria 2 geothermal power plant in Kenya”, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684, p-ISSN: 2320-334X, Cilt 15, Sayı 5 Ver. II (Sep.-Oct. 2018), ss. 63-73, http://doi.org/10.9790/1684-1505026373
- Li, Z., Chen, L., 2019, “A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method”, Engineering Applications of Artificial Intelligence, Cilt 77, ss. 136-147, https://doi.org/10.1016/j.engappai.2018.10.005
- Liu, H.-C., Liu, L., Liu, N., 2013, “Risk evaluation approaches in failure mode and effects analysis: A literature review, Expert Systems with Applications, Cilt 40, ss. 828-838, https://doi.org/10.1016/j.eswa.2012.08.010
- Liu, H.-C., Chen X.-Q., You J.-X., Li, Z., 2021, “A new ıntegrated approach for risk evaluation and classification with dynamic expert weights”, IEEE Transactions on Reliability, Cilt 70, Sayı 1, ss. 163-174, https://doi.org/10.1109/TR.2020.2973403.
- Lund, J. W., 1997, “Direct heat utilization of geothermal resources”, Renewable Energy, Cilt 10, ss. 403–408. https://doi.org/10.1016/0960-1481(96)00097-3
- Min, H., 1994, “Location analysis of ınternational consolidation terminal using the AHP”, Journal of Business Logistics, Cilt 15, Sayı 2, ss. 25-44, https://search.library.northwestern.edu/permalink/01NWU_INST/6rv399/cdi_proquest_journals_212603598
- Mutlu, M., Sarı, M., 2017, “Çok kriterli karar verme yöntemleri ve madencilik sektöründe kullanımı”, Bilimsel Madencilik Dergisi, Cilt 56, Sayı 4, ss. 181-196, http://www.mining.org.tr/tr/pub/issue/35230/391953
- Nasruddin, N., Kurniawan, N., Prasetyadi, D., Sherly, 2018, “Critical analysis using FMEA fuzzy logic on geothermal steam turbine system”, AIP Conference Proceedings 1983, 020031. https://doi.org/10.1063/1.5046227
- Özcan, S., 2001, “İstatiksel proses kontrol tekniklerinden pareto analizi ve çimento sanayiinde bir uygulama”, Cumhuriyet Üniversitesi, İktisadi ve İdari Bilimler Dergisi, Cilt 2, Sayı 2, ss. 151-174,
REN21, 2020, “Renewables 2019 global status report”, Renewable Enerji Policy Network for the 21st century Paris, France, ss. 336. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf, ziyaret tarihi:02 Ağustos 2021.
- Saaty, T. L., 1980, The Analytic Hierarchy Process, New York: McGraw Hill, International, Translated to Russian, Portuguese, and Chinese, Revised, Pittsburgh: RWS Publications.
- Saaty, T. L., 2000, Fundamentals of decision making and priority theory. 2. Edition, RWS Publications, Pittsburgh.
- Saaty, T. L., 2013, Mathematical principles of decision making: the complete theory of the analytic hierarchy process, USA: RWS Publications.
- Sarıçalı, G., Kundakcı, N., 2016, “AHP ve Copras yöntemleri ile otel alternatiflerinin değerlendirilmesi”, International Review of Economics and Management, Cilt 4, Sayı 1, ss. 45-66, https://doi.org/10.18825/irem.00736
- Su, X., Deng, Y., Mahadevan, S., Bao, Q., 2012, “An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades”, Engineering Failure Analysis, Cilt 26, ss. 164-174, https://doi.org/10.1016/j.engfailanal.2012.07.009
- Şimşek, Y., 2014, Risk Management Approach And Risk Analysis İn Solar Thermal Energy Projects, M.Sc Thesis, ITU Energy Institute Department of Energy Science and Technology, ss. 106.
- TJD, 2021, “Jeotermal enerji nedir”, Türkiye Jeotermal Derneği http://www.jeotermaldernegi.org.tr/sayfalar-Jeotermal-Enerji-Nedir-, ziyaret tarihi:02 Ağustos 2021.
- Tsai, S.-B., Yu, J., Ma, L., Luo, F., Zhou, J., Chen, Q., Xu, L., 2018, “A study on solving the production process problems of the photovoltaic cell industry”, Renewable and Sustainable Energy Reviews, Cilt 82, ss. 3546–3553. https://doi.org/10.1016/j.rser.2017.10.105
- Vaidya, O. S., Kumar, S., 2006, “Analytic hierarchy process: an overview of applications”, European Journal of Operational Research, Cilt 169, ss. 1–29, https://doi.org/10.1016/j.ejor.2004.04.028
- Wang, Y. M., Chin, K. S., Poon Gary Ka, K., Yang, J. B., 2009, “Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean”, Expert Systems with Applications, Cilt 36, ss. 1195-1207, https://doi.org/10.1016/j.eswa.2007.11.028
- Xiao, N., Huang, H. Z., Li, Y., He, L., Jin, T., 2011, “Multiple failure modes analysis and weighted risk priority number evaluation in FMEA”, Engineering Failure Analysis, Cilt 18, ss. 1162-1170, https://doi.org/10.1016/j.engfailanal.2011.02.004
- Zhang, H-J., Zhou, Y., Gan, Q-H., 2019, “An extended PROMETHEE-II-based risk prioritization method for equipment failures in the geothermal power plant”, International Journal of Fuzzy Systems, Cilt 21, ss. 2490–2509, https://doi.org/10.1007/s40815-019-00679-x