Algorithm of Neighbor Isolated Scattering Number
Year 2023,
Volume: 11 Issue: 1, 150 - 159, 01.03.2023
Mehmet Aykut Tosun
,
Ersin Aslan
,
Emin Borandag
Abstract
Network security and reliability is an essential part of computer networks. Network security has had to improve due to hackers. Business continuity is another reason for improvement. Networks can be modeled with graphs. Various parameters exist to measure the vulnerability of graphs, and hence of networks. In this paper, we consider neighbor isolated scattering number and an algorithm has been developed for the proposed vulnerability measurement parameter, which we recommend to measure for any graph and the algorithm is analyzed by software code metrics and have been shown to be useful. Thus, it has been concluded that humanpower will be saved by using an algorithm while measuring vulnerability for any graph.
References
- [1] C. A. Barefoot, R. C. Entringer, ve H. C. Swart, “Vulnerability in graphs—A comparative survey”, Journal of Combinatorial Mathematics and Combinatorial Computing, c. 1, ss. 13-22, 1987.
- [2] M. B. Cozzens, D. Moazzami, ve S. Stueckle, “The tenacity of the Harary Graphs”, J. Combin. Math. Combin. Comput., c. 16, ss. 33-56, 1994.
- [3] Y. Li, S. Zhang, ve X. Li, “Rupture degree of graphs”, Int J Comput Math, c. 82(7), ss. 793-803, 2005, doi: 10.1080/00207160412331336062.
- [4] H. A. Jung, “On a class of posets and the corresponding comparability graphs”, Journal of Combinatorial Theory, Series B, c. 24(2), ss. 125-133, 1978, doi: 10.1016/0095-8956(78)90013-8.
- [5] G. Gunther ve B. L. Hartnell, “Optimal K-secure graphs”, Top Catal, c. 2(3), ss. 225-231, 1980, doi: 10.1016/0166-218X(80)90042-6.
- [6] Z. Wei, A. Mai, ve M. Zhai, “Vertex-neighbor-scattering number of graphs”, Ars Combinatoria, c. 102, ss. 417-426, 2011.
- [7] S. S. Y. Wu ve M. B. Cozzens, “The minimum size of critically m-neighbour-connected graphs”, Ars Combinatoria, c. 29, ss. 149-160, 1990.
- [8] E. Aslan, “Neighbour isolated scattering number of graphs”, ScienceAsia, c. 41, sy 6, ss. 423-431, 2015, doi: 10.2306/scienceasia1513-1874.2015.41.423.
- [9] M. Jurkiewicz, “Bounds on isolated scattering number”, ANZIAM J, c. 62, ss. 72-83, 2020, doi: 10.21914/anziamj.v62i0.15912.
- [10] F. Li, Q. Ye, ve Y. Sun, “Isolated Scattering Number Can be Computed in Polynomial Time for Interval Graphs”, ANZIAM Journal, c. 58, sy March, s. 81, 2017, doi: 10.21914/anziamj.v58i0.10993.
- [11] F. Li ve X. Li, “The neighbour-scattering number can be computed in polynomial time for interval graphs”, Computers and Mathematics with Applications, c. 54, sy 5, ss. 679-686, 2007, doi: 10.1016/j.camwa.2007.02.006.
- [12] “Radon Documentation”. https://radon.readthedocs.io/en/latest/ (erişim 7 Nisan 2022).
- [13] D. Coleman, D. Ash, B. Lowther, ve P. Oman, “Using Metrics to Evaluate Software Svstem”, IEEE Computer, c. 27, sy 8, ss. 44-49, 1994.
- [14] A. van Deursen, “Think Twice Before Using the ‘Maintainability Index’”, https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/, 2014.
- [15] “Maintainability Index Range and Meaning”, Code Analysis Team Blog, blogs.msdn, 2007. https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning (erişim 7 Nisan 2022).
- [16] P. Oman ve J. Hagemeister, “Metrics for assessing a software system’s maintainability”, Proceedings - Conference on Software Maintenance, ICSM 1992, ss. 337-344, 1992, doi: 10.1109/ICSM.1992.242525.
- [17] S. R. Schach, Object-Oriented and Classical Software Engineering. New York: NY: McGraw-Hill, 2011.
- [18] A. G. Koru, K. el Emam, D. Zhang, H. Liu, ve D. Mathew, “Theory of Relative Defect Proneness”, Empir Softw Eng, c. 13, sy 5, ss. 473-498, 2008, doi: 10.1007/s10664-008-9080-x.
- [19] M. H. Halstead, Elements of Software Science. New York: NY, USA: Elsevier Science Inc., 1977.
- [20] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software Engineering, c. 2, sy 4, ss. 308-320, 1976, doi: 10.1109/TSE.1976.233837.
- [21] M. Bray vd., “C4 Software Technology Reference Guide-A Prototype”, Oca. 1997.
- [22] M. Shepperd, “A Critique of Cyclomatic Complexity as a Software Metric”, Software engineering journal, c. 3, sy 2, ss. 30-36, 1988, doi: 10.1049/sej.1988.0003.
- [23] M. Jørgensen, “A Review of Studies on Expert Estimation of Software Development Effort”, Journal of Systems and Software, c. 70, sy 1-2, ss. 37-60, 2004, doi: 10.1016/S0164-1212(02)00156-5.
- [24] “NetworkX Offical Website”. http://networkx.github.io (erişim 7 Nisan 2022).
KOMŞU İZOLE SAÇILMA SAYISININ ALGORİTMASI
Year 2023,
Volume: 11 Issue: 1, 150 - 159, 01.03.2023
Mehmet Aykut Tosun
,
Ersin Aslan
,
Emin Borandag
Abstract
Ağ güvenliği ve güvenilirliği, bilgisayar ağlarının önemli bir parçasıdır. Bilgisayar korsanları nedeniyle ağ güvenliği iyileştirilmek zorundadır. İş sürekliliği, iyileştirme için başka bir nedendir. Ağlar graflarla modellenebilir. Grafların ve dolayısıyla ağların zedelenebilirliğini ölçmek için çeşitli parametreler mevcuttur. Bu makalede, komşu izole saçılma sayısı ele alınmış ve önerilen zedelenebilirlik ölçüm parametresinin herhangi bir graf için ölçülmesini önerdiğimiz bir algoritma geliştirilmiş ve algoritma yazılım kod metrikleri ile analiz edilmiş ve faydalı olduğu gösterilmiştir. Böylelikle herhangi bir graf için zedelenebilirlik ölçümü yaparken algoritma kullanarak insan işgücünden tasarruf sağlanacağı sonucuna varılmıştır.
Supporting Institution
Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
References
- [1] C. A. Barefoot, R. C. Entringer, ve H. C. Swart, “Vulnerability in graphs—A comparative survey”, Journal of Combinatorial Mathematics and Combinatorial Computing, c. 1, ss. 13-22, 1987.
- [2] M. B. Cozzens, D. Moazzami, ve S. Stueckle, “The tenacity of the Harary Graphs”, J. Combin. Math. Combin. Comput., c. 16, ss. 33-56, 1994.
- [3] Y. Li, S. Zhang, ve X. Li, “Rupture degree of graphs”, Int J Comput Math, c. 82(7), ss. 793-803, 2005, doi: 10.1080/00207160412331336062.
- [4] H. A. Jung, “On a class of posets and the corresponding comparability graphs”, Journal of Combinatorial Theory, Series B, c. 24(2), ss. 125-133, 1978, doi: 10.1016/0095-8956(78)90013-8.
- [5] G. Gunther ve B. L. Hartnell, “Optimal K-secure graphs”, Top Catal, c. 2(3), ss. 225-231, 1980, doi: 10.1016/0166-218X(80)90042-6.
- [6] Z. Wei, A. Mai, ve M. Zhai, “Vertex-neighbor-scattering number of graphs”, Ars Combinatoria, c. 102, ss. 417-426, 2011.
- [7] S. S. Y. Wu ve M. B. Cozzens, “The minimum size of critically m-neighbour-connected graphs”, Ars Combinatoria, c. 29, ss. 149-160, 1990.
- [8] E. Aslan, “Neighbour isolated scattering number of graphs”, ScienceAsia, c. 41, sy 6, ss. 423-431, 2015, doi: 10.2306/scienceasia1513-1874.2015.41.423.
- [9] M. Jurkiewicz, “Bounds on isolated scattering number”, ANZIAM J, c. 62, ss. 72-83, 2020, doi: 10.21914/anziamj.v62i0.15912.
- [10] F. Li, Q. Ye, ve Y. Sun, “Isolated Scattering Number Can be Computed in Polynomial Time for Interval Graphs”, ANZIAM Journal, c. 58, sy March, s. 81, 2017, doi: 10.21914/anziamj.v58i0.10993.
- [11] F. Li ve X. Li, “The neighbour-scattering number can be computed in polynomial time for interval graphs”, Computers and Mathematics with Applications, c. 54, sy 5, ss. 679-686, 2007, doi: 10.1016/j.camwa.2007.02.006.
- [12] “Radon Documentation”. https://radon.readthedocs.io/en/latest/ (erişim 7 Nisan 2022).
- [13] D. Coleman, D. Ash, B. Lowther, ve P. Oman, “Using Metrics to Evaluate Software Svstem”, IEEE Computer, c. 27, sy 8, ss. 44-49, 1994.
- [14] A. van Deursen, “Think Twice Before Using the ‘Maintainability Index’”, https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/, 2014.
- [15] “Maintainability Index Range and Meaning”, Code Analysis Team Blog, blogs.msdn, 2007. https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning (erişim 7 Nisan 2022).
- [16] P. Oman ve J. Hagemeister, “Metrics for assessing a software system’s maintainability”, Proceedings - Conference on Software Maintenance, ICSM 1992, ss. 337-344, 1992, doi: 10.1109/ICSM.1992.242525.
- [17] S. R. Schach, Object-Oriented and Classical Software Engineering. New York: NY: McGraw-Hill, 2011.
- [18] A. G. Koru, K. el Emam, D. Zhang, H. Liu, ve D. Mathew, “Theory of Relative Defect Proneness”, Empir Softw Eng, c. 13, sy 5, ss. 473-498, 2008, doi: 10.1007/s10664-008-9080-x.
- [19] M. H. Halstead, Elements of Software Science. New York: NY, USA: Elsevier Science Inc., 1977.
- [20] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software Engineering, c. 2, sy 4, ss. 308-320, 1976, doi: 10.1109/TSE.1976.233837.
- [21] M. Bray vd., “C4 Software Technology Reference Guide-A Prototype”, Oca. 1997.
- [22] M. Shepperd, “A Critique of Cyclomatic Complexity as a Software Metric”, Software engineering journal, c. 3, sy 2, ss. 30-36, 1988, doi: 10.1049/sej.1988.0003.
- [23] M. Jørgensen, “A Review of Studies on Expert Estimation of Software Development Effort”, Journal of Systems and Software, c. 70, sy 1-2, ss. 37-60, 2004, doi: 10.1016/S0164-1212(02)00156-5.
- [24] “NetworkX Offical Website”. http://networkx.github.io (erişim 7 Nisan 2022).