Research Article
BibTex RIS Cite

ANFIS-BASED REAL-TIME POWER ESTIMATION FOR WIND TURBINES

Year 2023, Volume: 11 Issue: 1, 136 - 149, 01.03.2023
https://doi.org/10.36306/konjes.1200149

Abstract

In this study, it is aimed to make real-time power estimation for the V44-600 model wind turbine of Vestas company. The scope of the study is aimed to perform ANFIS-based power estimation for the V44-600 VESTAS wind turbine, which is intensely used in the wind industry, by using the wind speed and air density data of the city of Nevşehir. For this purpose, an Adaptive Network Based Fuzzy Inference System (ANFIS) trained on V44-600 wind turbine data was used. For the training and testing steps of ANFIS, wind speed, air density, and output power of the wind turbine are used as input-output parameters. As a result of the simulations and training, the percent relative error value in the widest range where the prediction value deviates from the true value is 11.86%. This value was higher than expected due to the scarcity of the data used in the ANFIS training (144) and the repetitive values in the output power. Similarly, the lowest efficiency value is 89.4%. Despite all this, it has been observed that ANFIS gives good results if the data used in the testing process is within the scope of the data used in the training. Moreover, the developed model when supported with 32-bit hardware can make real-time power estimation for a real wind turbine. The main motivation for this study; is develop a model that can predict the output power for the Vestas V44-600 model based on wind speed and air density data. In addition, it is to produce the Fuzzy Interface System (FIS) file that enables the developed model to run on embedded systems.

References

  • [1] O. Noureldeen, & I. Hamdan, "An Efficient ANFIS Crowbar Protection for DFIG Wind Turbines during Faults", 2017 Nineteenth International Middle-East Power Systems Conference (Mepcon), 263-269, 2017.
  • [2] Y. S. Guclu, "Angström-Prescott Modelinin Polinom İle Geliştirilmesi Ve Diyarbakir Güneş Işinimi Verilerine Uygulanmasi" Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7(1), 75-88, 2019.
  • [3] L. Rajaji, & C. Kumar, "ANFIS Based Soft Starter for Grid Integration with Wind Turbine System", 2008 Ieee Region 10 Conference: Tencon 2008, Vols 1-4, 1560-+, 2008.
  • [4] P. Pinson, "Wind Energy: Forecasting Challenges for Its Operational Management", Statistical Science, 28(4), 564-585, 2013. doi:10.1214/13-Sts445.
  • [5] M. Kordestani, M. Rezamand, R. Carriveau, D.S.K. Ting, & M. Saif, "Failure Diagnosis of Wind Turbine Bearing Using Feature Extraction and a Neuro-Fuzzy Inference System (ANFIS)", Advances in Computational Intelligence, Iwann 2019, Pt I, 11506, 545-556, 2019. doi:10.1007/978-3-030-20521-8_45.
  • [6] K. Ramesh, & P.B. Kumar, "A Nonlinear Controller Design for Variable Speed Wind Turbines Using Anfis" Proceedings of the 3rd International Conference on Communication and Electronics Systems (Icces 2018), 639-644, 2018.
  • [7] B. Chen, P.C. Matthews, & P. J. Tavner, "Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS", Expert Systems with Applications, 40(17), 6863-6876, 2013. doi:10.1016/j.eswa.2013.06.018.
  • [8] R. Belu, & D. Koracin, "Effects of complex wind regimes and meteorlogical parameters on wind turbine performances", Paper presented at the 2012 IEEE Energytech, (2012, 29-31 May 2012).
  • [9] T. Demirdelen, P. Tekin, I. O. Aksu, & F. Ekinci, "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence", Sustainability, 11(17), 2019. doi:ARTN 4803 10.3390/su11174803.
  • [10] A. Heydari, M. Majidi Nezhad, M. Neshat, D. A. Garcia, F. Keynia, L. De Santoli, & L. Bertling Tjernberg, "A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data", Energies, 14(12), 3459, 2021.
  • [11] M. R. Sarkar, S. Julai, C. W. Tong, & S. F. Toha, "Effectiveness of Nature-Inspired Algorithms using ANFIS for Blade Design Optimization and Wind Turbine Efficiency", Symmetry-Basel, 11(4), 2019. doi:ARTN 456 10.3390/sym11040456.
  • [12] F. Ekinci, T. Demirdelen, & M. Bilgili, "Modelling of Wind Turbine Power Output by Using ANNs and ANFIS Techniques", 2017 Seventh International Conference on Innovative Computing Technology (Intech 2017), 126-131, 2017.
  • [13] Q. Zhou, T. T. Xiong, M. B. Wang, C. M. Xiang, & P. Q. Xu, "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS", Energies, 10(7), 2017. doi:ARTN 89810.3390/en10070898.
  • [14] A. D. Janarthanan, L. Venkatesan, & G. Muruganandam, “Sensorless Control of PMSG Wind Turbine Using ANFIS”, Energy Efficient Technologies for Sustainability, 2013, 768, 131-135. doi:10.4028/.
  • [15] D. Petkovic, Z. Cojbasic, & V. Nikolic, “Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation”, Renewable & Sustainable Energy Reviews, 28, 191-195, 2013. doi:10.1016/j.rser.2013.07.049
  • [16] A. B. Asghar, & X. Liu, “Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine”, Neurocomputing, 272, 495-504, 2018. doi:https://doi.org/10.1016/j.neucom.2017.07.022
  • [17] F. Golnary, & H. Moradi, “Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed”, Applied Mathematical Modelling, 65, 566-585, 2019. doi:10.1016/j.apm.2018.08.030
  • [18] J. Sargolzaei, & A. Kianifar, “Neuro-fuzzy modeling tools for estimation of torque in Savonius rotor wind turbine”, Advances in Engineering Software, 41(4), 619-626, 2010. doi:10.1016/j.advengsoft.2009.12.002
  • [19] S. Tumse, A. Ilhan, M. Bilgili, & B. Sahin, “Estimation of wind turbine output power using soft computing models”, Energy Sources Part a-Recovery Utilization and Environmental Effects, 44(2), 3757-3786, 2022. doi:10.1080/15567036.2022.2066226
  • [20] A. B. Asghar, & X. D. Liu, “Estimation of wind turbine power coefficient by adaptive neuro-fuzzy methodology”, Neurocomputing, 238, 227-233, 2017. doi:10.1016/j.neucom.2017.01.058
  • [21] F. Golnary, & H. Moradi, “Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation”, Renewable Energy, 127, 495-508, 2018. doi:10.1016/j.renene.2018.04.081
  • [22] V. Nikolic, D. Petkovic, S. Shamshirband, & Z. Cojbasic, “Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance”, Energy, 89, 324-333, 2018. doi:10.1016/j.energy.2015.05.126
  • [23] Thewindpower. (08 July 2022). V44/600. https://www.thewindpower.net/turbine_en_177_vestas_v44-600.php. Retrieved from https://media.mwps.world/static/2011/03/Technical-description-Vestas-600-kW.pdf, (Erişim zamanı; 02, 24, 2023).
  • [24] V. Gumus, İ. M. Yolluk, O. Simsek, & G. Soydan, “Batmiş Hidrolik Siçramada Geri Dönüş Bölgesi Uzunluğunun Yapay Zekâ Yöntemleriyle Tahmini”, Konya Mühendislik Bilimleri Dergisi, 9(3), 606-620, 2021.
  • [25] A. A. Kulaksiz, “ANFIS-based estimation of PV module equivalent parameters: application to a stand-alone PV system with MPPT controller”, Turkish Journal of Electrical Engineering and Computer Sciences, 21(8), 2127-2140, 2013.
  • [26] P. A. Adedeji, S. Akinlabi, N. Madushele, & O. O. Olatunji, “Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model”, Journal of Cleaner Production, 254, 2020. doi:ARTN 120135 10.1016/j.jclepro.2020.120135

Rüzgar Türbinleri İçin ANFIS Tabanlı Gerçek Zamanlı Güç Tahmini

Year 2023, Volume: 11 Issue: 1, 136 - 149, 01.03.2023
https://doi.org/10.36306/konjes.1200149

Abstract

Bu çalışmada Vestas firmasına ait V44-600 model rüzgar türbini için gerçek zamanlı güç tahmini yapılması amaçlanmıştır. Çalışma kapsamında rüzgar endüstrisinde yoğun olarak kullanılan V44-600 VESTAS rüzgar türbini için Nevşehir ili rüzgar hızı ve hava yoğunluğu verileri kullanılarak ANFIS tabanlı güç tahmini yapılması amaçlanmıştır. Bu amaçla, V44-600 rüzgar türbini verileri üzerinden eğitilmiş Uyarlamalı Ağ Tabanlı Bulanık Çıkarım Sistemi (ANFIS) kullanılmıştır. ANFIS'in eğitim ve test adımları için giriş-çıkış parametreleri olarak rüzgar hızı, hava yoğunluğu ve rüzgar türbininin çıkış gücü kullanılmıştır. Simülasyonlar ve eğitimler sonucunda tahmin değerinin gerçek değerden saptığı en geniş aralıktaki bağıl hata yüzdesi %11,86'dır. ANFIS eğitiminde kullanılan verilerin azlığı (144) ve çıkış gücündeki tekrarlanan değerler nedeniyle bu değer beklenenden yüksek çıkmıştır. Benzer şekilde en düşük verim değeri %89,4'tür. Tüm bunlara rağmen, test sürecinde kullanılan verilerin eğitiminde kullanılan veriler kapsamında olması durumunda ANFIS'in iyi sonuçlar verdiği gözlemlenmiştir. Ayrıca geliştirilen model 32 bit donanım ile desteklendiğinde gerçek bir rüzgar türbini için gerçek zamanlı güç tahmini yapabilmektedir. Bu çalışmanın temel motivasyonu; Rüzgar hızı ve hava yoğunluğu verilerine dayalı olarak Vestas V44-600 modeli için çıkış gücünü tahmin edebilen bir model geliştirmek. Ayrıca geliştirilen modelin gömülü sistemler üzerinde çalışmasını sağlayan Fuzzy Interface System (FIS) dosyasını üretebilmektir.

References

  • [1] O. Noureldeen, & I. Hamdan, "An Efficient ANFIS Crowbar Protection for DFIG Wind Turbines during Faults", 2017 Nineteenth International Middle-East Power Systems Conference (Mepcon), 263-269, 2017.
  • [2] Y. S. Guclu, "Angström-Prescott Modelinin Polinom İle Geliştirilmesi Ve Diyarbakir Güneş Işinimi Verilerine Uygulanmasi" Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7(1), 75-88, 2019.
  • [3] L. Rajaji, & C. Kumar, "ANFIS Based Soft Starter for Grid Integration with Wind Turbine System", 2008 Ieee Region 10 Conference: Tencon 2008, Vols 1-4, 1560-+, 2008.
  • [4] P. Pinson, "Wind Energy: Forecasting Challenges for Its Operational Management", Statistical Science, 28(4), 564-585, 2013. doi:10.1214/13-Sts445.
  • [5] M. Kordestani, M. Rezamand, R. Carriveau, D.S.K. Ting, & M. Saif, "Failure Diagnosis of Wind Turbine Bearing Using Feature Extraction and a Neuro-Fuzzy Inference System (ANFIS)", Advances in Computational Intelligence, Iwann 2019, Pt I, 11506, 545-556, 2019. doi:10.1007/978-3-030-20521-8_45.
  • [6] K. Ramesh, & P.B. Kumar, "A Nonlinear Controller Design for Variable Speed Wind Turbines Using Anfis" Proceedings of the 3rd International Conference on Communication and Electronics Systems (Icces 2018), 639-644, 2018.
  • [7] B. Chen, P.C. Matthews, & P. J. Tavner, "Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS", Expert Systems with Applications, 40(17), 6863-6876, 2013. doi:10.1016/j.eswa.2013.06.018.
  • [8] R. Belu, & D. Koracin, "Effects of complex wind regimes and meteorlogical parameters on wind turbine performances", Paper presented at the 2012 IEEE Energytech, (2012, 29-31 May 2012).
  • [9] T. Demirdelen, P. Tekin, I. O. Aksu, & F. Ekinci, "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence", Sustainability, 11(17), 2019. doi:ARTN 4803 10.3390/su11174803.
  • [10] A. Heydari, M. Majidi Nezhad, M. Neshat, D. A. Garcia, F. Keynia, L. De Santoli, & L. Bertling Tjernberg, "A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data", Energies, 14(12), 3459, 2021.
  • [11] M. R. Sarkar, S. Julai, C. W. Tong, & S. F. Toha, "Effectiveness of Nature-Inspired Algorithms using ANFIS for Blade Design Optimization and Wind Turbine Efficiency", Symmetry-Basel, 11(4), 2019. doi:ARTN 456 10.3390/sym11040456.
  • [12] F. Ekinci, T. Demirdelen, & M. Bilgili, "Modelling of Wind Turbine Power Output by Using ANNs and ANFIS Techniques", 2017 Seventh International Conference on Innovative Computing Technology (Intech 2017), 126-131, 2017.
  • [13] Q. Zhou, T. T. Xiong, M. B. Wang, C. M. Xiang, & P. Q. Xu, "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS", Energies, 10(7), 2017. doi:ARTN 89810.3390/en10070898.
  • [14] A. D. Janarthanan, L. Venkatesan, & G. Muruganandam, “Sensorless Control of PMSG Wind Turbine Using ANFIS”, Energy Efficient Technologies for Sustainability, 2013, 768, 131-135. doi:10.4028/.
  • [15] D. Petkovic, Z. Cojbasic, & V. Nikolic, “Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation”, Renewable & Sustainable Energy Reviews, 28, 191-195, 2013. doi:10.1016/j.rser.2013.07.049
  • [16] A. B. Asghar, & X. Liu, “Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine”, Neurocomputing, 272, 495-504, 2018. doi:https://doi.org/10.1016/j.neucom.2017.07.022
  • [17] F. Golnary, & H. Moradi, “Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed”, Applied Mathematical Modelling, 65, 566-585, 2019. doi:10.1016/j.apm.2018.08.030
  • [18] J. Sargolzaei, & A. Kianifar, “Neuro-fuzzy modeling tools for estimation of torque in Savonius rotor wind turbine”, Advances in Engineering Software, 41(4), 619-626, 2010. doi:10.1016/j.advengsoft.2009.12.002
  • [19] S. Tumse, A. Ilhan, M. Bilgili, & B. Sahin, “Estimation of wind turbine output power using soft computing models”, Energy Sources Part a-Recovery Utilization and Environmental Effects, 44(2), 3757-3786, 2022. doi:10.1080/15567036.2022.2066226
  • [20] A. B. Asghar, & X. D. Liu, “Estimation of wind turbine power coefficient by adaptive neuro-fuzzy methodology”, Neurocomputing, 238, 227-233, 2017. doi:10.1016/j.neucom.2017.01.058
  • [21] F. Golnary, & H. Moradi, “Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation”, Renewable Energy, 127, 495-508, 2018. doi:10.1016/j.renene.2018.04.081
  • [22] V. Nikolic, D. Petkovic, S. Shamshirband, & Z. Cojbasic, “Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance”, Energy, 89, 324-333, 2018. doi:10.1016/j.energy.2015.05.126
  • [23] Thewindpower. (08 July 2022). V44/600. https://www.thewindpower.net/turbine_en_177_vestas_v44-600.php. Retrieved from https://media.mwps.world/static/2011/03/Technical-description-Vestas-600-kW.pdf, (Erişim zamanı; 02, 24, 2023).
  • [24] V. Gumus, İ. M. Yolluk, O. Simsek, & G. Soydan, “Batmiş Hidrolik Siçramada Geri Dönüş Bölgesi Uzunluğunun Yapay Zekâ Yöntemleriyle Tahmini”, Konya Mühendislik Bilimleri Dergisi, 9(3), 606-620, 2021.
  • [25] A. A. Kulaksiz, “ANFIS-based estimation of PV module equivalent parameters: application to a stand-alone PV system with MPPT controller”, Turkish Journal of Electrical Engineering and Computer Sciences, 21(8), 2127-2140, 2013.
  • [26] P. A. Adedeji, S. Akinlabi, N. Madushele, & O. O. Olatunji, “Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model”, Journal of Cleaner Production, 254, 2020. doi:ARTN 120135 10.1016/j.jclepro.2020.120135
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Göksel Gökkuş 0000-0003-4266-5556

Publication Date March 1, 2023
Submission Date November 6, 2022
Acceptance Date December 10, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

IEEE G. Gökkuş, “ANFIS-BASED REAL-TIME POWER ESTIMATION FOR WIND TURBINES”, KONJES, vol. 11, no. 1, pp. 136–149, 2023, doi: 10.36306/konjes.1200149.