Research Article
BibTex RIS Cite

BİYOKÜTLEDEN GÖZENEKLİ KARBONLU MALZEME ÜRETİMİ: BİYOKÜTLE TİPİ VE SICAKLIĞIN FİZİKOKİMYASAL ÖZELLİKLERE ETKİSİ

Year 2023, Volume: 11 Issue: 1, 261 - 273, 01.03.2023
https://doi.org/10.36306/konjes.1205637

Abstract

Bu çalışmada, yenilenebilir bir kaynak olan 2 farklı biyokütlenin (karaçam ağacı talaşı ve meşe ağacı talaşı) detaylı karakterizasyonu, bu biyokütlelerden farklı sıcaklıklarda (400, 500 ve 700 °C) karbonizasyon yöntemi ile karbonlu malzeme üretilmesi ve üretilen bu malzemelerin karakterizasyonu gerçekleştirilmiştir. Çalışmanın amacı, biyokütle tipinin ve karbonizasyon sıcaklığının elde edilen karbonlu malzemenin fizikokimyasal özellikleri üzerine etkisinin belirlenmesidir. Bu sebeple biyokütle örnekleri seçilirken, birinin sert odun (hard wood) diğerinin yumuşak odun (soft wood) olmasına dikkat edilmiştir. Biyokütle ve elde edilen örneklerin ön analizleri gerçekleştirilmiştir. Elementel analiz, Fourier dönüşümlü kızılötesi spektrometresi (FT-IR) ve Taramalı elektron mikroskobu (SEM) teknikleri kullanılarak karakterizasyon çalışmaları tamamlanmıştır. Elde edilen sonuçlara göre, karbonizasyon sonucu elde edilen karbonlu malzemenin fizikokimyasal özelliklerinin hammadde tipi ve reaksiyon koşullarına bağlı olduğu belirlenmiştir.

References

  • [1] H. Xue, X. Gao, M. K. Seliem, M. Mobarak, R. Dong, X. Wang, Z. Li, “Efficient adsorption of anionic azo dyes on porous heterostructured MXene/biomass activated carbon composites: Experiments, characterization, and theoretical analysis via advanced statistical physics models”, Chemical Engineering Journal, vol. 451, no. 3, Jan., pp. 138735, 2023.
  • [2] A. Ito, K. Tanaka, “Applications of Carbon Nanotubes and Graphene in Spin Electronics”, Carbon Nanotubes and Graphene, pp. 253-278, 2014.
  • [3] W. D. Li, X. P. Wang, Eds., Nanofibers: Synthesis, Properties, and Applications, Nova Science Publishers Incorporated, 2012.
  • [4] C. Ma, J. Bai, M. Demir, Q. Yu, X. Hu, W. Jiang, L. Wang, “Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance”, Separation and Purification Technology, vol. 303, Dec., pp. 122299, 2022.
  • [5] C. Ma, T. Lu, M. Demir, Q. Yu, X. Hu, W. Jiang, L. Wang, “Polyacrylonitrile-Derived N-Doped Nanoporous Carbon Fibers for CO2 Adsorption”, ACS Applied Nano Materials, vol. 5, no. 9, Aug., pp. 13473-13481, 2022.
  • [6] Q. Yu, J. Bai, J. Huang, M. Demir, B. N. Altay, X. Hu, L. Wang, “One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance”, Molecules, Vol. 27, no. 20, Oct., pp. 6816, 2022.
  • [7] S. Ray, “Applications of graphene and graphene-oxide based nanomaterials”, William Andrew Press, 2015.
  • [8] A. Gul, N. G. Khaligh, N. M. Julkapli, “Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment”, Journal of Molecular Structure, vol. 1235, July, pp. 130148, 2021.
  • [9] X. Zhang, Y. Li, Z. Zhang, M. Nie, L. Wang, H. Zhang, “Adsorption of condensable particulate matter from coal-fired flue gas by activated carbon”, Science of The Total Environment, vol. 778, July, pp. 146245, 2021.
  • [10] H. Zhang, J. Niu, Y. Guo, F. Cheng, “Recirculating coking by-products and waste for cost-effective activated carbon (AC) production and its application for treatment of SO2 and wastewater in coke-making plant”, Journal of Cleaner Production, vol. 280, no:2, Jan., pp. 124375, 2021.
  • [11] E. Yaman, F. Ö. Gökmen, S. Temel, N. Özbay, “Evaluation of bio-char as porous catalyst support in the pyrolysis of Brassica napus subsp. napus cake”, Journal of Porous Materials, vol. 29, no. 3, Feb., pp. 771-781, 2022.
  • [12] A. M. Abioye, F. N. Ani, “Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review”, Renewable and sustainable energy reviews, vol. 52, Dec., pp. 1282-129, 2015.
  • [13] M. Sevilla, R. Mokaya, “Energy storage applications of activated carbons: supercapacitors and hydrogen storage”, Energy & Environmental Science, vol. 7, no. 4, Jan., pp. 1250-1280, 2014.
  • [14] R. K. Bera, S. G. Mhaisalkar, D. Mandler, S. Magdassi, “Formation and performance of highly absorbing solar thermal coating based on carbon nanotubes and boehmite”, Energy Conversion and Management, vol. 120, July, pp. 287-293, 2016.
  • [15] G. Zou, D. Zhang, C. Dong, H. Li, K. Xiong, L. Fei, Y. Qian, “Carbon nanofibers: synthesis, characterization, and electrochemical properties”, Carbon, vol. 44, no. 5, Apr., pp. 828-832, 2006.
  • [16] L. Ge, C. Zhao, M. Zuo, J. Tang, W. Ye, X. Wang, C. Xu, “Review on the preparation of high value-added carbon materials from biomass”, Journal of Analytical and Applied Pyrolysis, vol. 168, Nov., pp. 105747, 2022.
  • [17] E. Kapluhan, “Enerji Coğrafyası Açısından Bir İnceleme: Biyokütle Enerjisinin Dünyadaki ve Türkiye’deki Kullanım Durumu”, Marmara Coğrafya Dergisi, vol. 30, Kas., pp. 97, 2014.
  • [18] A. Aşma, E. Yaman, S. Temel, “Biyokütleden Üretilen Karbon Altlık Üzerinde ZnO Nano-Parçacıkların Biriktirilmesi ve Karakterizasyonu”, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 29, no. 3, Ara., pp. 431-439, 2021.
  • [19] E. Sözen, G. Gündüz, D. Aydemir, E. Güngör, “Biyokütle Kullanımının Enerji, Çevre, Sağlık ve Ekonomi Açısından Değerlendirilmesi”, Bartın Orman Fakültesi Dergisi, vol. 19, no. 1, Haz., pp. 149, 2017.
  • [20] E. Novaes, M. Kirst, V. Chiang, H. Winter-Sederoff, R. Sederoff, “Lignin And Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees”, Plant Physiology, vol. 154, no. 2, Oct., pp. 557, 2010.
  • [21] Diffen, 2021, “Hardwood vs Softwood” 2022 [Online] Available: https://www.diffen.com/difference/Hardwood_vs_Softwood [accessed: 15.11.2022]
  • [22] J. P. Diebold, A. V. Bridgwater, “Overview of Fast Pyrolysis of Biomass for The Production of Liquid Fuels”. Developments in Thermochemical Biomass Conversion, Springer, Dordrecht, 1997.
  • [23] T. Kan, V. Strezov, T. J. Evans, “Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters”, Renewable And Sustainable Energy Reviews, vol. 57, pp. 1139, May, 2016.
  • [24] P. R. Yaashikaa, P. S. Kumar, S. Varjani, A. Saravanan “A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy”, Biotechnology Reports, vol. 28, Dec., pp. 00570, 2020.
  • [25] B. Khiari, I. Ghouma, A. I. Ferjani, A. A. Azzaz, S. Jellali, L. Limousy, M. Jeguirim, “Kenaf stems: Thermal characterization and conversion for biofuel and biochar production”, Fuel, vol. 262, Feb., pp. 116654, 2020.
  • [26] A. Hmid, D. Mondelli, S. Fiore, F. P. Fanizzi, Z. Al Chami, S. Dumontet, “Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis”, Biomass and Bioenergy, vol. 71, Dec., pp. 337, 2014.
  • [27] A. Ghysels, A. Krämer, R. M. Venable, W. E. Teague, E. Lyman, K. Gawrisch, R. W. Pastor, “Permeability of membranes in the liquid ordered and liquid disordered phases”, Nature communications, vol. 10, no.1, Dec., pp. 11, 2019.
  • [28] G. Bhowmick, A. K. Sarmah, R. Sen, “Lignocellulosic biorefinery as a model for sustainable development of biofuels and value-added products”, Bioresource technology, vol. 247, Jan., pp. 1148, 2018.
  • [29] D. Mohan, A. Sarswat, Y. S. Ok, C. U. Pittman Jr, “Organic And İnorganic Contaminants Removal from Water with Biochar, A Renewable, Low Cost And Sustainable Adsorbent–A Critical Review”, Bioresource Technology, vol. 160, May., pp. 201, 2014.
  • [30] M. K. Hossain, V. Strezov, K. Y. Chan, A. Ziolkowski, P. F., Nelson, “Influence of Pyrolysis Temperature on Production And Nutrient Properties Of Wastewater Sludge Biochar”, Journal of Environmental Management, vol. 92, no. 1, Jan., pp. 225, 2011.
  • [31] Y. Lee, J. Park, C. Ryu, K. S. Gang, W. Yang, Y. K. Park, S., Hyun, “Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C”, Bioresource Technology, vol. 148, Nov., pp. 197, 2015.
  • [32] L. Xie, Q. Li, M. Demir, Q. Yu, X. Hu, Z. Jiang, L. Wang, “Lotus seed pot-derived nitrogen enriched porous carbon for CO2 capture application”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 655, Dec., pp. 130226, 2022.
  • [33] C. Song, K. Chen, M. Chen, X. Jin, G. Liu, X. Du, Q. Huang, “Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H3PO4-modified TiO2 nanoparticles anchored on biochar”, Journal of Water Process Engineering, vol. 45, Feb., pp. 102467, 2022.
  • [34] H. Luo, S. Yu, M. Zhong, Y. Han, B. Su, Z. Lei, “Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances”, Journal of Alloys and Compounds, vol. 899, Apr., pp. 163287, 2022.
  • [35] R. Shan, L. Lu, J. Gu, Y. Zhang, H. Yuan, Y. Chen, B. Luo, “Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions”, Materials Science in Semiconductor Processing, vol. 114, Aug., pp. 105088, 2020.
  • [36] L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, “A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange”, Chemosphere, vol. 222, May, pp. 391-398, 2019.
  • [37] J. Kim, B. Park, Y. Son, J. Khim “Peat moss-derived biochar for sonocatalytic applications”, Ultrasonics Sonochemistry, vol. 42, Apr., pp. 26-30, 2018.
  • [38] ASTM, “Standart test method for bulk density of densified particulate biomass fuels”, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, E 873-82, 1983.
  • [39] ASTM, “Standart test method for ash in wood”, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, D-1102-84, 1983.
  • [40] ASTM, “Standart test method for volatile matter in analysis sample refuse derived fuel-3”, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, E-897-82, 1983.
  • [41] J. H. Harker, J. R. Backhurst, Fuel and Energy 120, London, Academic Press Inc., 1981.
  • [42] B. V. Babu, A. S. Chaurasia, “Modeling for pyrolysis of solid particle: kinetics and heat transfer effects”, Energy Conversion and Management, vol. 44, no. 14, Aug., pp. 2254, 2003.
  • [43] A. S. Khan, Z. Man, M. A. Bustam, A. Nasrullah, Z. Ullah, A. Sarwono, N. Muhammad, “Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids”, Carbohydrate polymers, vol. 181, Feb, pp. 211, 2018.
  • [44] N. Wang, A. Tahmasebi, J. Yu, J. Xu, F. Huang, A. Mamaeva, “A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass”, Bioresource technology, vol. 190, Aug., pp. 90, 2015.
  • [45] E. Yaman, “Biyokütleden Fenolik Hidrokarbonlarca Zengin Değerli Kimyasalların Elde Edilmesi”, PhD thesis, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik, 2018.
  • [46] P. Devi, A. K. Saroha, “Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge”, Bioresource technology, vol. 192, Sep., pp. 316, 2015.
  • [47] T. Yuan, A. Tahmasebi, J. Yu, “Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor”, Bioresource Technology, vol. 175, Jan., pp. 333, 2015.
  • [48] A. Ulusal, “Biyokütleden piroliz yöntemi ile üretilen biyocharin çevresel etkilerinin incelenmesi”, Master's thesis, Anadolu Üniversitesi, 2016.
  • [49] A. Tomczyk, Z. Sokołowska, P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects”, Reviews in Environmental Science and Bio/Technology, vol.19, no. 1, Feb., pp. 193, 2020.
  • [50] N. Özbay, A. Ş. Yargıç, R. Z. Y. Şahin, E. Yaman, “Research on the Pyrolysis Characteristics of Tomato Waste with Fe–Al2O3 Catalyst”, In Exergetic, Energetic and Environmental Dimensions, pp. 815-828, Academic Press, 2018.
  • [51] E. Yaman, A. Ulusal, B. B. Uzun, “Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics”, SN Appl Sci, vol. 3, no. 1, Jan., pp. 1–15, 2021.
  • [52] E. Yaman, T. C. Ulu, N. Özbay, “Characterization of different biochars and their impacts on infectivity of entomopathogenic nematode Heterorhabditis bacteriophora”, Biomass Conversion and Biorefinery, in press, 1-14, 2021.

Production of Porous Carbon Materials From Biomass: The Effect of Biomass Type and Temperature on Physiochemical Properties

Year 2023, Volume: 11 Issue: 1, 261 - 273, 01.03.2023
https://doi.org/10.36306/konjes.1205637

Abstract

In this study, detailed characterization of two different biomass samples (black pine wood sawdust and oak wood sawdust) which is a renewable resource, carbonization of these biomass at different temperatures (400, 500 and 700 °C) and the characterization of produced carbonaceous materials were carried out. The aim of the study is to specify the effect of biomass type and carbonization temperature on the physicochemical properties of the carbonaceous materials obtained. For this reason, while selecting biomass samples, importance was attached to ensure that one of them is hard wood and the other is soft wood. Pre-liminary analyses of biomass and obtained carbonaceous samples were executed. Characterization studies were completed using elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) techniques. According to the results, it was determined that the physicochemical properties of the carbonaceous material obtained as a result of carbonization depend on the raw material type and reaction conditions.

References

  • [1] H. Xue, X. Gao, M. K. Seliem, M. Mobarak, R. Dong, X. Wang, Z. Li, “Efficient adsorption of anionic azo dyes on porous heterostructured MXene/biomass activated carbon composites: Experiments, characterization, and theoretical analysis via advanced statistical physics models”, Chemical Engineering Journal, vol. 451, no. 3, Jan., pp. 138735, 2023.
  • [2] A. Ito, K. Tanaka, “Applications of Carbon Nanotubes and Graphene in Spin Electronics”, Carbon Nanotubes and Graphene, pp. 253-278, 2014.
  • [3] W. D. Li, X. P. Wang, Eds., Nanofibers: Synthesis, Properties, and Applications, Nova Science Publishers Incorporated, 2012.
  • [4] C. Ma, J. Bai, M. Demir, Q. Yu, X. Hu, W. Jiang, L. Wang, “Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance”, Separation and Purification Technology, vol. 303, Dec., pp. 122299, 2022.
  • [5] C. Ma, T. Lu, M. Demir, Q. Yu, X. Hu, W. Jiang, L. Wang, “Polyacrylonitrile-Derived N-Doped Nanoporous Carbon Fibers for CO2 Adsorption”, ACS Applied Nano Materials, vol. 5, no. 9, Aug., pp. 13473-13481, 2022.
  • [6] Q. Yu, J. Bai, J. Huang, M. Demir, B. N. Altay, X. Hu, L. Wang, “One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance”, Molecules, Vol. 27, no. 20, Oct., pp. 6816, 2022.
  • [7] S. Ray, “Applications of graphene and graphene-oxide based nanomaterials”, William Andrew Press, 2015.
  • [8] A. Gul, N. G. Khaligh, N. M. Julkapli, “Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment”, Journal of Molecular Structure, vol. 1235, July, pp. 130148, 2021.
  • [9] X. Zhang, Y. Li, Z. Zhang, M. Nie, L. Wang, H. Zhang, “Adsorption of condensable particulate matter from coal-fired flue gas by activated carbon”, Science of The Total Environment, vol. 778, July, pp. 146245, 2021.
  • [10] H. Zhang, J. Niu, Y. Guo, F. Cheng, “Recirculating coking by-products and waste for cost-effective activated carbon (AC) production and its application for treatment of SO2 and wastewater in coke-making plant”, Journal of Cleaner Production, vol. 280, no:2, Jan., pp. 124375, 2021.
  • [11] E. Yaman, F. Ö. Gökmen, S. Temel, N. Özbay, “Evaluation of bio-char as porous catalyst support in the pyrolysis of Brassica napus subsp. napus cake”, Journal of Porous Materials, vol. 29, no. 3, Feb., pp. 771-781, 2022.
  • [12] A. M. Abioye, F. N. Ani, “Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review”, Renewable and sustainable energy reviews, vol. 52, Dec., pp. 1282-129, 2015.
  • [13] M. Sevilla, R. Mokaya, “Energy storage applications of activated carbons: supercapacitors and hydrogen storage”, Energy & Environmental Science, vol. 7, no. 4, Jan., pp. 1250-1280, 2014.
  • [14] R. K. Bera, S. G. Mhaisalkar, D. Mandler, S. Magdassi, “Formation and performance of highly absorbing solar thermal coating based on carbon nanotubes and boehmite”, Energy Conversion and Management, vol. 120, July, pp. 287-293, 2016.
  • [15] G. Zou, D. Zhang, C. Dong, H. Li, K. Xiong, L. Fei, Y. Qian, “Carbon nanofibers: synthesis, characterization, and electrochemical properties”, Carbon, vol. 44, no. 5, Apr., pp. 828-832, 2006.
  • [16] L. Ge, C. Zhao, M. Zuo, J. Tang, W. Ye, X. Wang, C. Xu, “Review on the preparation of high value-added carbon materials from biomass”, Journal of Analytical and Applied Pyrolysis, vol. 168, Nov., pp. 105747, 2022.
  • [17] E. Kapluhan, “Enerji Coğrafyası Açısından Bir İnceleme: Biyokütle Enerjisinin Dünyadaki ve Türkiye’deki Kullanım Durumu”, Marmara Coğrafya Dergisi, vol. 30, Kas., pp. 97, 2014.
  • [18] A. Aşma, E. Yaman, S. Temel, “Biyokütleden Üretilen Karbon Altlık Üzerinde ZnO Nano-Parçacıkların Biriktirilmesi ve Karakterizasyonu”, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 29, no. 3, Ara., pp. 431-439, 2021.
  • [19] E. Sözen, G. Gündüz, D. Aydemir, E. Güngör, “Biyokütle Kullanımının Enerji, Çevre, Sağlık ve Ekonomi Açısından Değerlendirilmesi”, Bartın Orman Fakültesi Dergisi, vol. 19, no. 1, Haz., pp. 149, 2017.
  • [20] E. Novaes, M. Kirst, V. Chiang, H. Winter-Sederoff, R. Sederoff, “Lignin And Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees”, Plant Physiology, vol. 154, no. 2, Oct., pp. 557, 2010.
  • [21] Diffen, 2021, “Hardwood vs Softwood” 2022 [Online] Available: https://www.diffen.com/difference/Hardwood_vs_Softwood [accessed: 15.11.2022]
  • [22] J. P. Diebold, A. V. Bridgwater, “Overview of Fast Pyrolysis of Biomass for The Production of Liquid Fuels”. Developments in Thermochemical Biomass Conversion, Springer, Dordrecht, 1997.
  • [23] T. Kan, V. Strezov, T. J. Evans, “Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters”, Renewable And Sustainable Energy Reviews, vol. 57, pp. 1139, May, 2016.
  • [24] P. R. Yaashikaa, P. S. Kumar, S. Varjani, A. Saravanan “A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy”, Biotechnology Reports, vol. 28, Dec., pp. 00570, 2020.
  • [25] B. Khiari, I. Ghouma, A. I. Ferjani, A. A. Azzaz, S. Jellali, L. Limousy, M. Jeguirim, “Kenaf stems: Thermal characterization and conversion for biofuel and biochar production”, Fuel, vol. 262, Feb., pp. 116654, 2020.
  • [26] A. Hmid, D. Mondelli, S. Fiore, F. P. Fanizzi, Z. Al Chami, S. Dumontet, “Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis”, Biomass and Bioenergy, vol. 71, Dec., pp. 337, 2014.
  • [27] A. Ghysels, A. Krämer, R. M. Venable, W. E. Teague, E. Lyman, K. Gawrisch, R. W. Pastor, “Permeability of membranes in the liquid ordered and liquid disordered phases”, Nature communications, vol. 10, no.1, Dec., pp. 11, 2019.
  • [28] G. Bhowmick, A. K. Sarmah, R. Sen, “Lignocellulosic biorefinery as a model for sustainable development of biofuels and value-added products”, Bioresource technology, vol. 247, Jan., pp. 1148, 2018.
  • [29] D. Mohan, A. Sarswat, Y. S. Ok, C. U. Pittman Jr, “Organic And İnorganic Contaminants Removal from Water with Biochar, A Renewable, Low Cost And Sustainable Adsorbent–A Critical Review”, Bioresource Technology, vol. 160, May., pp. 201, 2014.
  • [30] M. K. Hossain, V. Strezov, K. Y. Chan, A. Ziolkowski, P. F., Nelson, “Influence of Pyrolysis Temperature on Production And Nutrient Properties Of Wastewater Sludge Biochar”, Journal of Environmental Management, vol. 92, no. 1, Jan., pp. 225, 2011.
  • [31] Y. Lee, J. Park, C. Ryu, K. S. Gang, W. Yang, Y. K. Park, S., Hyun, “Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C”, Bioresource Technology, vol. 148, Nov., pp. 197, 2015.
  • [32] L. Xie, Q. Li, M. Demir, Q. Yu, X. Hu, Z. Jiang, L. Wang, “Lotus seed pot-derived nitrogen enriched porous carbon for CO2 capture application”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 655, Dec., pp. 130226, 2022.
  • [33] C. Song, K. Chen, M. Chen, X. Jin, G. Liu, X. Du, Q. Huang, “Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H3PO4-modified TiO2 nanoparticles anchored on biochar”, Journal of Water Process Engineering, vol. 45, Feb., pp. 102467, 2022.
  • [34] H. Luo, S. Yu, M. Zhong, Y. Han, B. Su, Z. Lei, “Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances”, Journal of Alloys and Compounds, vol. 899, Apr., pp. 163287, 2022.
  • [35] R. Shan, L. Lu, J. Gu, Y. Zhang, H. Yuan, Y. Chen, B. Luo, “Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions”, Materials Science in Semiconductor Processing, vol. 114, Aug., pp. 105088, 2020.
  • [36] L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, “A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange”, Chemosphere, vol. 222, May, pp. 391-398, 2019.
  • [37] J. Kim, B. Park, Y. Son, J. Khim “Peat moss-derived biochar for sonocatalytic applications”, Ultrasonics Sonochemistry, vol. 42, Apr., pp. 26-30, 2018.
  • [38] ASTM, “Standart test method for bulk density of densified particulate biomass fuels”, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, E 873-82, 1983.
  • [39] ASTM, “Standart test method for ash in wood”, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, D-1102-84, 1983.
  • [40] ASTM, “Standart test method for volatile matter in analysis sample refuse derived fuel-3”, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, E-897-82, 1983.
  • [41] J. H. Harker, J. R. Backhurst, Fuel and Energy 120, London, Academic Press Inc., 1981.
  • [42] B. V. Babu, A. S. Chaurasia, “Modeling for pyrolysis of solid particle: kinetics and heat transfer effects”, Energy Conversion and Management, vol. 44, no. 14, Aug., pp. 2254, 2003.
  • [43] A. S. Khan, Z. Man, M. A. Bustam, A. Nasrullah, Z. Ullah, A. Sarwono, N. Muhammad, “Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids”, Carbohydrate polymers, vol. 181, Feb, pp. 211, 2018.
  • [44] N. Wang, A. Tahmasebi, J. Yu, J. Xu, F. Huang, A. Mamaeva, “A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass”, Bioresource technology, vol. 190, Aug., pp. 90, 2015.
  • [45] E. Yaman, “Biyokütleden Fenolik Hidrokarbonlarca Zengin Değerli Kimyasalların Elde Edilmesi”, PhD thesis, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik, 2018.
  • [46] P. Devi, A. K. Saroha, “Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge”, Bioresource technology, vol. 192, Sep., pp. 316, 2015.
  • [47] T. Yuan, A. Tahmasebi, J. Yu, “Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor”, Bioresource Technology, vol. 175, Jan., pp. 333, 2015.
  • [48] A. Ulusal, “Biyokütleden piroliz yöntemi ile üretilen biyocharin çevresel etkilerinin incelenmesi”, Master's thesis, Anadolu Üniversitesi, 2016.
  • [49] A. Tomczyk, Z. Sokołowska, P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects”, Reviews in Environmental Science and Bio/Technology, vol.19, no. 1, Feb., pp. 193, 2020.
  • [50] N. Özbay, A. Ş. Yargıç, R. Z. Y. Şahin, E. Yaman, “Research on the Pyrolysis Characteristics of Tomato Waste with Fe–Al2O3 Catalyst”, In Exergetic, Energetic and Environmental Dimensions, pp. 815-828, Academic Press, 2018.
  • [51] E. Yaman, A. Ulusal, B. B. Uzun, “Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics”, SN Appl Sci, vol. 3, no. 1, Jan., pp. 1–15, 2021.
  • [52] E. Yaman, T. C. Ulu, N. Özbay, “Characterization of different biochars and their impacts on infectivity of entomopathogenic nematode Heterorhabditis bacteriophora”, Biomass Conversion and Biorefinery, in press, 1-14, 2021.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Aynur Aşma 0000-0001-5890-9039

Elif Yaman 0000-0002-1052-8779

Sinan Temel 0000-0002-0889-9490

Publication Date March 1, 2023
Submission Date November 16, 2022
Acceptance Date January 3, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

IEEE A. Aşma, E. Yaman, and S. Temel, “BİYOKÜTLEDEN GÖZENEKLİ KARBONLU MALZEME ÜRETİMİ: BİYOKÜTLE TİPİ VE SICAKLIĞIN FİZİKOKİMYASAL ÖZELLİKLERE ETKİSİ”, KONJES, vol. 11, no. 1, pp. 261–273, 2023, doi: 10.36306/konjes.1205637.