Research Article
BibTex RIS Cite

ENHANCED OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS BY FLEXIBLE β-TCP/PLA BONE GRAFTS WITH SILICATE ADDITIVE

Year 2023, Volume: 11 Issue: 3, 770 - 782, 01.09.2023
https://doi.org/10.36306/konjes.1198527

Abstract

In recent years, ceramics, polymers, and composites have been used to develop biologically and mechanically suitable bone scaffolds. β-tricalcium phosphate(β-TCP) is a widely used bioceramic in bone tissue engineering. It shows excellent osteoconductivity, osteoinductivity, and good biocompatibility properties, as its chemical composition is similar to the original chemical structure of bone. Herein, we designed β-TCP-PLA composite scaffolds containing two different concentrations of silicate additives. We aimed to investigate the effect of silicate-additive with varying concentrations (0.8% and 1%) on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) seeded flexible bone grafts. The morphological structure of β-TCP-PLA-based bone grafts was assessed by scanning electron microscopy (SEM) and the tensile strength of grafts was evaluated. The results showed that scaffolds had porous and flexible structures. hMSCs osteogenic differentiation was evaluated with the alkaline phosphatase (ALP) activity and DNA content measurements. Compared with β-TCP-PLA grafts, these designed synthetic flexible bone grafts with 0.8% and 1% silicate-additive significantly promoted hMSCs proliferation and osteogenic differentiation. Moreover, 0.8% silicate-additive β-TCP-PLA grafts showed increased ALP activity. The outcomes of the present study suggest that synthetic flexible bone grafts with silicate-additive might be useful for encouraging the regeneration of bone.

References

  • M. R. Brinker and D. P. O'Connor, "The incidence of fractures and dislocations referred for orthopaedic services in a capitated population," J Bone Joint Surg Am, vol. 86, no. 2, pp. 290-7, 2004.
  • B. Baroli, "From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges," Journal of Pharmaceutical Sciences, vol. 98, no. 4, pp. 1317-1375, 2009.
  • R. Agarwal and A. J. García, "Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair," Advanced Drug Delivery Reviews, vol. 94, pp. 53-62, 2015.
  • H. Qu, H. Fu, Z. Han, and Y. Sun, "Biomaterials for bone tissue engineering scaffolds: a review," RSC Adv, vol. 9, no. 45, pp. 26252-26262, 2019.
  • A. Wubneh, E. K. Tsekoura, C. Ayranci, and H. Uludağ, "Current state of fabrication technologies and materials for bone tissue engineering," Acta Biomaterialia, vol. 80, pp. 1-30, 2018.
  • M. M. Stevens, "Biomaterials for bone tissue engineering," Materials Today, vol. 11, no. 5, pp. 18-25, 2008.
  • P. Chocholata, V. Kulda, and V. Babuska, "Fabrication of scaffolds for bone-tissue regeneration," Materials, vol. 12, no. 4, p. 568, 2019.
  • Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, "45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering," Biomaterials, vol. 27, no. 11, pp. 2414-2425, 2006.
  • F. Matassi, L. Nistri, D. C. Paez, and M. Innocenti, "New biomaterials for bone regeneration," Clinical Cases in Mineral and Bone Metabolism, vol. 8, no. 1, p. 21, 2011.
  • T. Matsuno et al., "Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration," Dental Materials - Journals, vol. 25, no. 1, pp. 138-144, 2006.
  • R. W. Nicholas and T. A. Lange, "Granular tricalcium phosphate grafting of cavitary lesions in human bone," Clinical Orthopaedics and Related Research, no. 306, pp. 197-203, 1994.
  • M. P. McAndrew, P. W. Gorman, and T. A. Lange, "Tricalcium phosphate as a bone graft substitute in trauma: preliminary report," Journal of Orthopaedic Trauma, vol. 2, no. 4, pp. 333-339, 1988.
  • M. Bohner, B. L. G. Santoni, and N. Döbelin, "β-tricalcium phosphate for bone substitution: Synthesis and properties," Acta Biomaterialia, vol. 113, pp. 23-41, 2020.
  • G. Lewis, "Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review," (in eng), Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 76, no. 2, pp. 456-68, Feb 2006, doi: 10.1002/jbm.b.30398.
  • G. Daculsi, "Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute," Biomaterials, vol. 19, no. 16, pp. 1473-1478, 1998/08/01/ 1998, doi: https://doi.org/10.1016/S0142-9612(98)00061-1.
  • G. Narayanan, V. N. Vernekar, E. L. Kuyinu, and C. T. Laurencin, "Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering," Advanced Drug Delivery Reviews, vol. 107, pp. 247-276, 2016.
  • C. Ning, "Biomaterials for Bone Tissue Engineering," in Biomechanics and Biomaterials in Orthopedics: Springer, 2016, pp. 35-57.
  • S. Xu et al., "Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics," (in eng), Biomaterials, vol. 29, no. 17, pp. 2588-96, Jun 2008, doi: 10.1016/j.biomaterials.2008.03.013.
  • K. A. Hing, L. F. Wilson, and T. Buckland, "Comparative performance of three ceramic bone graft substitutes," (in eng), The Spine Journal, vol. 7, no. 4, pp. 475-90, Jul-Aug 2007, doi: 10.1016/j.spinee.2006.07.017.
  • V. V. Nagineni et al., "Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures," (in eng), Spine (Phila Pa 1976), vol. 37, no. 20, pp. E1264-72, Sep 15 2012, doi: 10.1097/BRS.0b013e318265e22e.
  • M. Ahmadipour et al., "A review: silicate ceramic-polymer composite scaffold for bone tissue engineering," International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 71, no. 3, pp. 180-195, 2022.
  • C. Wu and J. Chang, "A review of bioactive silicate ceramics," Biomedical Materials, vol. 8, no. 3, p. 032001, 2013.
  • M. J. Coathup, S. Samizadeh, Y. S. Fang, T. Buckland, K. A. Hing, and G. W. Blunn, "The osteoinductivity of silicate-substituted calcium phosphate," Journal of Bone and Joint Surgery, vol. 93, no. 23, pp. 2219-2226, 2011.
  • K. Cameron, P. Travers, C. Chander, T. Buckland, C. Campion, and B. Noble, "Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate," Journal of Biomedical Materials Research Part A, vol. 101, no. 1, pp. 13-22, 2013.
  • O. Chan et al., "The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials," Acta Biomaterialia, vol. 8, no. 7, pp. 2788-2794, 2012.
  • S. Bose, M. Roy, and A. Bandyopadhyay, "Recent advances in bone tissue engineering scaffolds," Trends in Biotechnology, vol. 30, no. 10, pp. 546-554, 2012.
  • M. Büyüköz and S. A. Aktınkaya, "Jelatin Doku İskelesinin Mekanik Özellikleri Üzerine Gözenek Oluşturucu Ajanın Boyutu ve Bağlantı Süresinin Etkileri-The Effects of Porogen Agent Size and Interconnection Time on the Mechanical Properties of Gelatin Scaffold," Celal Bayar University Journal of Science, vol. 11, no. 2, 2015.
  • H. J. Park et al., "Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction," International Journal of Biological Macromolecules, vol. 78, pp. 215-223, 2015.
  • A. G. Mikos et al., "Preparation and characterization of poly (L-lactic acid) foams," Polymer, vol. 35, no. 5, pp. 1068-1077, 1994.
  • A. Eltom, G. Zhong, and A. Muhammad, "Scaffold techniques and designs in tissue engineering functions and purposes: a review," Advances in Materials Science and Engineering, vol. 2019, 2019.
  • O. Karaman, A. Kumar, S. Moeinzadeh, X. He, T. Cui, and E. Jabbari, "Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells," Journal of Tissue Engineering and Regenerative Medicine, vol. 10, no. 2, pp. E132-E146, 2016.
  • G. Onak et al., "Aspartic and glutamic acid templated peptides conjugation on plasma modified nanofibers for osteogenic differentiation of human mesenchymal stem cells: a comparative study," Scientific Reports, vol. 8, no. 1, pp. 1-15, 2018.
  • N. Abbasi, S. Hamlet, R. M. Love, and N.-T. Nguyen, "Porous scaffolds for bone regeneration," Journal of Science: Advanced Materials and Devices, vol. 5, no. 1, pp. 1-9, 2020.
  • S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, "3D-printed cellular structures for bone biomimetic implants," Additive Manufacturing, vol. 15, pp. 93-101, 2017.
  • V. Karageorgiou and D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, vol. 26, no. 27, pp. 5474-5491, 2005.
  • Y. Kuboki et al., "BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis," Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, vol. 39, no. 2, pp. 190-199, 1998.
  • A. R. Boccaccini and V. Maquet, "Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications," Composites Science and Technology, vol. 63, no. 16, pp. 2417-2429, 2003.
  • A. D. Dalgic, A. Z. Alshemary, A. Tezcaner, D. Keskin, and Z. Evis, "Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering," Journal of Biomaterials Applications, vol. 32, no. 10, pp. 1392-1405, 2018.
  • M. G. Axelsen, S. Overgaard, S. M. Jespersen, and M. Ding, "Comparison of synthetic bone graft ABM/P-15 and allograft on uninstrumented posterior lumbar spine fusion in sheep," Journal of Orthopaedic Surgery and Research, vol. 14, no. 1, p. 2, 2019/01/03 2019. [Online]. Available: https://doi.org/10.1186/s13018-018-1042-4.
  • N. Patel et al., "A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules," Journal of Materials Science: Materials in Medicine, vol. 13, no. 12, p. 1199, 2002.
  • K. A. Hing, P. A. Revell, N. Smith, and T. Buckland, "Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds," Biomaterials, vol. 27, no. 29, pp. 5014-5026, 2006.
  • A. E. Porter, T. Buckland, K. Hing, S. M. Best, and W. Bonfield, "The structure of the bond between bone and porous silicon‐substituted hydroxyapatite bioceramic implants," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 78, no. 1, pp. 25-33, 2006.
  • K. A. Hing, L. F. Wilson, and T. Buckland, "Comparative performance of three ceramic bone graft substitutes," The Spine Journal, vol. 7, no. 4, pp. 475-490, 2007.
  • D. L. Wheeler, L. G. Jenis, M. E. Kovach, J. Marini, and A. S. Turner, "Efficacy of silicated calcium phosphate graft in posterolateral lumbar fusion in sheep," The Spine Journal, vol. 7, no. 3, pp. 308-317, 2007.
  • T. Lerner and U. Liljenqvist, "Silicate-substituted calcium phosphate as a bone graft substitute in surgery for adolescent idiopathic scoliosis," European Spine Journal, vol. 22, pp. 185-194, 2013.
  • P. J. Marie and O. Fromigué, "Osteogenic differentiation of human marrow-derived mesenchymal stem cells," Regenerative Medicine, vol. 1, no. 4, pp. 539-48, 2006.

Silikat Katkılı Esnek β-TCP/PLA Kemik Greftleri ile İnsan Mezenkimal Kök Hücrelerinin Gelişmiş Osteojenik Farklılaşması

Year 2023, Volume: 11 Issue: 3, 770 - 782, 01.09.2023
https://doi.org/10.36306/konjes.1198527

Abstract

Son yıllarda biyolojik ve mekanik olarak uygun kemik iskeleleri geliştirmek için seramikler, polimerler ve bunların kompozitleri kullanılmaktadır. β-trikalsiyum fosfat(β-TCP), kimyasal bileşimi orijinal kemiğin kimyasal yapısına benzediğinden, mükemmel osteoiletkenlik, osteoindüktif ve iyi biyouyumluluk özellikleri gösteren, kemik dokusu mühendisliğinde yaygın olarak kullanılan bir seramiktir. Burada, iki farklı konsantrasyonda silikat katkı maddesi içeren β-TCP-PLA kompozit yapı iskeleleri tasarladık. Amacımız, değişen konsantrasyonlarda (%0,8 ve %1) silikat katkı maddesinin kemik greftleri üzerine ekilen insan kemik iliği kaynaklı mezenkimal kök hücrelerinin (iMKH'ler) osteojenik farklılaşması üzerindeki etkisini araştırmaktı. β-TCP-PLA bazlı kemik greftlerinin moleküler yapısı, taramalı elektron mikroskobu (TEM) kullanılarak değerlendirildi. Ayrıca greftlerin çekme mukavemeti de değerlendirildi. Karakterizasyon sonuçları, iskelelerin gözenekli ve esnek yapılara sahip olduğunu göstermiştir. iMKH'lerin osteojenik farklılaşması, alkalin fosfataz (ALP) aktivitesi ve DNA içeriği ölçümleri ile değerlendirildi. β-TCP-PLA greftleri ile karşılaştırıldığında, %0,8 ve %1 silikat katkılı bu tasarlanmış sentetik esnek kemik greftleri, hMSC'lerin çoğalmasını ve osteojenik farklılaşmasını önemli ölçüde desteklemiştir. Ayrıca, %0.8 silikat katkılı β-TCP-PLA greftleri, keskin bir şekilde artan ALP aktivitesi gösterdi. Bu çalışmanın sonuçları, silikat katkılı sentetik esnek kemik greftlerinin kemiğin yenilenmesini teşvik etmek için yararlı olabileceğini önermektedir.

Supporting Institution

Bonegraft Biyolojik Malzemeler San. ve Tic. A. Ş..

Thanks

Bonegraft Biyolojik Malzemeler San. ve Tic. A. Ş..

References

  • M. R. Brinker and D. P. O'Connor, "The incidence of fractures and dislocations referred for orthopaedic services in a capitated population," J Bone Joint Surg Am, vol. 86, no. 2, pp. 290-7, 2004.
  • B. Baroli, "From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges," Journal of Pharmaceutical Sciences, vol. 98, no. 4, pp. 1317-1375, 2009.
  • R. Agarwal and A. J. García, "Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair," Advanced Drug Delivery Reviews, vol. 94, pp. 53-62, 2015.
  • H. Qu, H. Fu, Z. Han, and Y. Sun, "Biomaterials for bone tissue engineering scaffolds: a review," RSC Adv, vol. 9, no. 45, pp. 26252-26262, 2019.
  • A. Wubneh, E. K. Tsekoura, C. Ayranci, and H. Uludağ, "Current state of fabrication technologies and materials for bone tissue engineering," Acta Biomaterialia, vol. 80, pp. 1-30, 2018.
  • M. M. Stevens, "Biomaterials for bone tissue engineering," Materials Today, vol. 11, no. 5, pp. 18-25, 2008.
  • P. Chocholata, V. Kulda, and V. Babuska, "Fabrication of scaffolds for bone-tissue regeneration," Materials, vol. 12, no. 4, p. 568, 2019.
  • Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, "45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering," Biomaterials, vol. 27, no. 11, pp. 2414-2425, 2006.
  • F. Matassi, L. Nistri, D. C. Paez, and M. Innocenti, "New biomaterials for bone regeneration," Clinical Cases in Mineral and Bone Metabolism, vol. 8, no. 1, p. 21, 2011.
  • T. Matsuno et al., "Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration," Dental Materials - Journals, vol. 25, no. 1, pp. 138-144, 2006.
  • R. W. Nicholas and T. A. Lange, "Granular tricalcium phosphate grafting of cavitary lesions in human bone," Clinical Orthopaedics and Related Research, no. 306, pp. 197-203, 1994.
  • M. P. McAndrew, P. W. Gorman, and T. A. Lange, "Tricalcium phosphate as a bone graft substitute in trauma: preliminary report," Journal of Orthopaedic Trauma, vol. 2, no. 4, pp. 333-339, 1988.
  • M. Bohner, B. L. G. Santoni, and N. Döbelin, "β-tricalcium phosphate for bone substitution: Synthesis and properties," Acta Biomaterialia, vol. 113, pp. 23-41, 2020.
  • G. Lewis, "Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review," (in eng), Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 76, no. 2, pp. 456-68, Feb 2006, doi: 10.1002/jbm.b.30398.
  • G. Daculsi, "Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute," Biomaterials, vol. 19, no. 16, pp. 1473-1478, 1998/08/01/ 1998, doi: https://doi.org/10.1016/S0142-9612(98)00061-1.
  • G. Narayanan, V. N. Vernekar, E. L. Kuyinu, and C. T. Laurencin, "Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering," Advanced Drug Delivery Reviews, vol. 107, pp. 247-276, 2016.
  • C. Ning, "Biomaterials for Bone Tissue Engineering," in Biomechanics and Biomaterials in Orthopedics: Springer, 2016, pp. 35-57.
  • S. Xu et al., "Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics," (in eng), Biomaterials, vol. 29, no. 17, pp. 2588-96, Jun 2008, doi: 10.1016/j.biomaterials.2008.03.013.
  • K. A. Hing, L. F. Wilson, and T. Buckland, "Comparative performance of three ceramic bone graft substitutes," (in eng), The Spine Journal, vol. 7, no. 4, pp. 475-90, Jul-Aug 2007, doi: 10.1016/j.spinee.2006.07.017.
  • V. V. Nagineni et al., "Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures," (in eng), Spine (Phila Pa 1976), vol. 37, no. 20, pp. E1264-72, Sep 15 2012, doi: 10.1097/BRS.0b013e318265e22e.
  • M. Ahmadipour et al., "A review: silicate ceramic-polymer composite scaffold for bone tissue engineering," International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 71, no. 3, pp. 180-195, 2022.
  • C. Wu and J. Chang, "A review of bioactive silicate ceramics," Biomedical Materials, vol. 8, no. 3, p. 032001, 2013.
  • M. J. Coathup, S. Samizadeh, Y. S. Fang, T. Buckland, K. A. Hing, and G. W. Blunn, "The osteoinductivity of silicate-substituted calcium phosphate," Journal of Bone and Joint Surgery, vol. 93, no. 23, pp. 2219-2226, 2011.
  • K. Cameron, P. Travers, C. Chander, T. Buckland, C. Campion, and B. Noble, "Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate," Journal of Biomedical Materials Research Part A, vol. 101, no. 1, pp. 13-22, 2013.
  • O. Chan et al., "The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials," Acta Biomaterialia, vol. 8, no. 7, pp. 2788-2794, 2012.
  • S. Bose, M. Roy, and A. Bandyopadhyay, "Recent advances in bone tissue engineering scaffolds," Trends in Biotechnology, vol. 30, no. 10, pp. 546-554, 2012.
  • M. Büyüköz and S. A. Aktınkaya, "Jelatin Doku İskelesinin Mekanik Özellikleri Üzerine Gözenek Oluşturucu Ajanın Boyutu ve Bağlantı Süresinin Etkileri-The Effects of Porogen Agent Size and Interconnection Time on the Mechanical Properties of Gelatin Scaffold," Celal Bayar University Journal of Science, vol. 11, no. 2, 2015.
  • H. J. Park et al., "Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction," International Journal of Biological Macromolecules, vol. 78, pp. 215-223, 2015.
  • A. G. Mikos et al., "Preparation and characterization of poly (L-lactic acid) foams," Polymer, vol. 35, no. 5, pp. 1068-1077, 1994.
  • A. Eltom, G. Zhong, and A. Muhammad, "Scaffold techniques and designs in tissue engineering functions and purposes: a review," Advances in Materials Science and Engineering, vol. 2019, 2019.
  • O. Karaman, A. Kumar, S. Moeinzadeh, X. He, T. Cui, and E. Jabbari, "Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells," Journal of Tissue Engineering and Regenerative Medicine, vol. 10, no. 2, pp. E132-E146, 2016.
  • G. Onak et al., "Aspartic and glutamic acid templated peptides conjugation on plasma modified nanofibers for osteogenic differentiation of human mesenchymal stem cells: a comparative study," Scientific Reports, vol. 8, no. 1, pp. 1-15, 2018.
  • N. Abbasi, S. Hamlet, R. M. Love, and N.-T. Nguyen, "Porous scaffolds for bone regeneration," Journal of Science: Advanced Materials and Devices, vol. 5, no. 1, pp. 1-9, 2020.
  • S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, "3D-printed cellular structures for bone biomimetic implants," Additive Manufacturing, vol. 15, pp. 93-101, 2017.
  • V. Karageorgiou and D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, vol. 26, no. 27, pp. 5474-5491, 2005.
  • Y. Kuboki et al., "BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis," Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, vol. 39, no. 2, pp. 190-199, 1998.
  • A. R. Boccaccini and V. Maquet, "Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications," Composites Science and Technology, vol. 63, no. 16, pp. 2417-2429, 2003.
  • A. D. Dalgic, A. Z. Alshemary, A. Tezcaner, D. Keskin, and Z. Evis, "Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering," Journal of Biomaterials Applications, vol. 32, no. 10, pp. 1392-1405, 2018.
  • M. G. Axelsen, S. Overgaard, S. M. Jespersen, and M. Ding, "Comparison of synthetic bone graft ABM/P-15 and allograft on uninstrumented posterior lumbar spine fusion in sheep," Journal of Orthopaedic Surgery and Research, vol. 14, no. 1, p. 2, 2019/01/03 2019. [Online]. Available: https://doi.org/10.1186/s13018-018-1042-4.
  • N. Patel et al., "A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules," Journal of Materials Science: Materials in Medicine, vol. 13, no. 12, p. 1199, 2002.
  • K. A. Hing, P. A. Revell, N. Smith, and T. Buckland, "Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds," Biomaterials, vol. 27, no. 29, pp. 5014-5026, 2006.
  • A. E. Porter, T. Buckland, K. Hing, S. M. Best, and W. Bonfield, "The structure of the bond between bone and porous silicon‐substituted hydroxyapatite bioceramic implants," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 78, no. 1, pp. 25-33, 2006.
  • K. A. Hing, L. F. Wilson, and T. Buckland, "Comparative performance of three ceramic bone graft substitutes," The Spine Journal, vol. 7, no. 4, pp. 475-490, 2007.
  • D. L. Wheeler, L. G. Jenis, M. E. Kovach, J. Marini, and A. S. Turner, "Efficacy of silicated calcium phosphate graft in posterolateral lumbar fusion in sheep," The Spine Journal, vol. 7, no. 3, pp. 308-317, 2007.
  • T. Lerner and U. Liljenqvist, "Silicate-substituted calcium phosphate as a bone graft substitute in surgery for adolescent idiopathic scoliosis," European Spine Journal, vol. 22, pp. 185-194, 2013.
  • P. J. Marie and O. Fromigué, "Osteogenic differentiation of human marrow-derived mesenchymal stem cells," Regenerative Medicine, vol. 1, no. 4, pp. 539-48, 2006.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Günnur Onak Pulat 0000-0003-0895-4768

Gülşah Sunal 0000-0001-7768-922X

Ozan Karaman 0000-0002-4175-4402

Publication Date September 1, 2023
Submission Date November 2, 2022
Acceptance Date June 14, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

IEEE G. Onak Pulat, G. Sunal, and O. Karaman, “ENHANCED OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS BY FLEXIBLE β-TCP/PLA BONE GRAFTS WITH SILICATE ADDITIVE”, KONJES, vol. 11, no. 3, pp. 770–782, 2023, doi: 10.36306/konjes.1198527.