Research Article
BibTex RIS Cite

ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS

Year 2015, Volume: 3 Issue: 2, 245 - 253, 01.10.2015

Abstract

In this paper, we investigate some properties of invariant submanifolds of almost $\alpha$-cosymplectic f- manifolds. We show that every invariant submanifold of an almost $\alpha$-cosymplectic f- manifold with Kaehlerian leaves is also an almost $\alpha$-cosymplectic f- manifold with Kaehlerian leaves. Moreover, we give a theorem on minimal invariant submanifold and obtain a necessary condition on a invariant submanifold to be totally geodesic. Finally, we study some properties of the curvature tensors of M and fM.

References

  • [1] Arslan K., Lumiste C., Murathan C. and Ozgur C., 2- semiparallel Surfaces in Space Forms. I. Two Particular Cases, Proc. Estonian Acad. Sci Phys. Math., 49(3), (2000), 139-148.
  • [2] Blair D.E., Geometry of manifolds with structural group U(n)  O(s), J. Di erential Geometry, 4(1970), 155-167.
  • [3] Chen B.Y., Geometry of submanifolds, Marcel Dekker Inc., New York, (1973).
  • [4] Chinea D., Prestelo P.S., Invariant submanifolds of a trans-Sasakian manifolds. Publ. Mat. Debrecen, 38/1-2 (1991), 103-109.
  • [5] Endo H., Invariant submanifolds in contact metric manifolds, Tensor (N.S.) 43 (1) (1886), pp. 193-202.
  • [6] Erken K.I, Dacko P. and Murathan C., Almost -paracosymplectic manifolds, arxiv: 1402.6930v1 [Math:DG] 27 Feb 2014.
  • [7]  Ozturk H., Murathan C., Aktan N., Vanli A.T., Almost -cosymplectic f-manifolds Analele stntfce ale unverstat 'AI.I Cuza' D as (S.N.) Matematica, Tomul LX, f.1., (2014).
  • [8] Kon M., Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27, (1973), 330-336.
  • [9] Terlizi L. D., On invariant submanifolds of C and S-manifolds. Acta Math. Hungar. 85(3), (1999), 229-239.
  • [10] Sarkar A. and Sen M., On invariant submanifold of trans- sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 61(1), (2012), 29-37.
  • [11] De A., Totally geodesic submanifolds of a trans-Sasakian manifold, Proceedings of the Estonian Academy of Sciences, 62(4), (2013), 249-257.
  • [12] Yano K. and Kon M., Structures on manifolds. World Scienti c, Singapore (1984).
  • [13] Yano K., On a structure de ned by a tensor f of type (1; 1) satisfying '3 + ' = 0, tensor N S., 14, (1963), 99-109.
Year 2015, Volume: 3 Issue: 2, 245 - 253, 01.10.2015

Abstract

References

  • [1] Arslan K., Lumiste C., Murathan C. and Ozgur C., 2- semiparallel Surfaces in Space Forms. I. Two Particular Cases, Proc. Estonian Acad. Sci Phys. Math., 49(3), (2000), 139-148.
  • [2] Blair D.E., Geometry of manifolds with structural group U(n)  O(s), J. Di erential Geometry, 4(1970), 155-167.
  • [3] Chen B.Y., Geometry of submanifolds, Marcel Dekker Inc., New York, (1973).
  • [4] Chinea D., Prestelo P.S., Invariant submanifolds of a trans-Sasakian manifolds. Publ. Mat. Debrecen, 38/1-2 (1991), 103-109.
  • [5] Endo H., Invariant submanifolds in contact metric manifolds, Tensor (N.S.) 43 (1) (1886), pp. 193-202.
  • [6] Erken K.I, Dacko P. and Murathan C., Almost -paracosymplectic manifolds, arxiv: 1402.6930v1 [Math:DG] 27 Feb 2014.
  • [7]  Ozturk H., Murathan C., Aktan N., Vanli A.T., Almost -cosymplectic f-manifolds Analele stntfce ale unverstat 'AI.I Cuza' D as (S.N.) Matematica, Tomul LX, f.1., (2014).
  • [8] Kon M., Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27, (1973), 330-336.
  • [9] Terlizi L. D., On invariant submanifolds of C and S-manifolds. Acta Math. Hungar. 85(3), (1999), 229-239.
  • [10] Sarkar A. and Sen M., On invariant submanifold of trans- sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 61(1), (2012), 29-37.
  • [11] De A., Totally geodesic submanifolds of a trans-Sasakian manifold, Proceedings of the Estonian Academy of Sciences, 62(4), (2013), 249-257.
  • [12] Yano K. and Kon M., Structures on manifolds. World Scienti c, Singapore (1984).
  • [13] Yano K., On a structure de ned by a tensor f of type (1; 1) satisfying '3 + ' = 0, tensor N S., 14, (1963), 99-109.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Selahattin Beyendı

Nesip Aktan

Ali İhsan Sıvrıdağ This is me

Publication Date October 1, 2015
Submission Date July 10, 2014
Published in Issue Year 2015 Volume: 3 Issue: 2

Cite

APA Beyendı, S., Aktan, N., & Sıvrıdağ, A. İ. (2015). ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp Journal of Mathematics, 3(2), 245-253.
AMA Beyendı S, Aktan N, Sıvrıdağ Aİ. ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp J. Math. October 2015;3(2):245-253.
Chicago Beyendı, Selahattin, Nesip Aktan, and Ali İhsan Sıvrıdağ. “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”. Konuralp Journal of Mathematics 3, no. 2 (October 2015): 245-53.
EndNote Beyendı S, Aktan N, Sıvrıdağ Aİ (October 1, 2015) ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp Journal of Mathematics 3 2 245–253.
IEEE S. Beyendı, N. Aktan, and A. İ. Sıvrıdağ, “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”, Konuralp J. Math., vol. 3, no. 2, pp. 245–253, 2015.
ISNAD Beyendı, Selahattin et al. “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”. Konuralp Journal of Mathematics 3/2 (October 2015), 245-253.
JAMA Beyendı S, Aktan N, Sıvrıdağ Aİ. ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp J. Math. 2015;3:245–253.
MLA Beyendı, Selahattin et al. “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”. Konuralp Journal of Mathematics, vol. 3, no. 2, 2015, pp. 245-53.
Vancouver Beyendı S, Aktan N, Sıvrıdağ Aİ. ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp J. Math. 2015;3(2):245-53.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.