[1] T. W. Kim, H. K. Pak, Canonical foliations of certain classes of almost contact metric
structures, Acta Math. Sinica, Eng. Ser. Aug., 21, 4 (2005), 841{846.
[2] G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math.
Soc. Simon Stevin, 14 (2007), 343{354.
[3] E. Boeckx, J. T. Cho, -parallel contact metric spaces, Dierential geometry and its applications,
22 (2005), 275{285.
[4] D. E., Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics,
203. Birkh^auser Boston, Inc., Boston, MA, (2002).
[5] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math.,
Berlin-Heidelberg-New York, 792 (1980), 435{443.
[6] Kassabov, O. T. , Schur's theorem for almost Hermitian manifolds, C. R. Acad. Bulg. Sci.
(54) 3, 15-18, 2001.
[7] Cho, J. T. ,Geometry of contact strongly pseudo-convex CR-manifolds, J. Korean Math. (43)
5, 1019-1045, 2006.
[8] Kulkarni, R. S. , On a theorem of F. Schur, Journal Di. Geom. (4), 453-456, 1970.
[9] Gabriel, E. V. , A Schur-type Theorem on Indenite Quaternionic Keahler Manifolds, Int.
J. Contemp. Math. 11 (2), 529 - 536, 2007.
[10] Nobuhiro, I., A theorem of Schur type for locally symmetric spaces, Sci. Rep. Niigata Univ.,
Ser. A (25), 1-4,.1989.
[11] Schur, F. , Ueber den Zusammenhang der Raume constanten Riemann'schen Kriimmungs-
masses mit den projectiven Raumen. Math. (27), 537-567, 1886.
[12] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structures, Pacic J. Math.
(31), 373-382, 1969.
[13] Olszak, Z., On almost cosymplectic manfolds, Kodai Math. J. (4), 239-250, 1981.
[14] Olszak, Z., Almost cosymplectic manfolds with Kahlerian leaves, Tensor N. S. (46), 117-124,
1987.
[15] Kirichenko, V. F. , Almost cosymplectic manifolds satisfying the axiom of <Pholomorphic
planes (in Russian), Dokl. Akad. Nauk SSSR ( 273), 280-28,1983.
[16] Endo, H. , On Ricci curvatures of almost cosymplectic manifolds, An.
Stiinj:Univ:"Al:I:Cuza"Iaxi;Mat:(40); 75 83; 1994:
[17] Blair, D. E. , The theory of quasi-Sasakian structures, J. Di. Geometry, (1), 331-345, 1967.
[18] Dacko, P. and Olszak, Z., On conformally
at almost cosymplectic manifolds with Keahlerian
leaves, Rend. Sem. Mat. Univ. Pol. Torino, (56) 1, 89-103, 1998.
[19] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structure, Pacic J. Math.
(31) , 373{382, 1969
[20] Tanno, S. , The standard CR structure on the unit tangent bundle Tohoku Math. J. 44 (2),
535-543, 1992.
[21] Blair, D. E. , Contact metric manifolds satisfying a nullity condition Israel J.of Math. (91),
1-3, 189-214, 1995..
[22] Nesip Aktan, Gulhan Ayar and Imren Bektas, A Schur type theorem for almost cosymplectic
manifolds with Kaehlerian leaves, Hacettepe Journal of Mathematics and Statistics Volume
42 (4) (2013), 455 { 463
[23] H. Ozturk, Nesip Aktan, Cengizhan Murathan, Almost -Cosymplectic ( ; ; )-Spaces,
arXiv:1007.0527
[24] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Journal, 24 (1972),93{
103
Year 2016,
Volume: 4 Issue: 1, 211 - 224, 01.04.2016
[1] T. W. Kim, H. K. Pak, Canonical foliations of certain classes of almost contact metric
structures, Acta Math. Sinica, Eng. Ser. Aug., 21, 4 (2005), 841{846.
[2] G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math.
Soc. Simon Stevin, 14 (2007), 343{354.
[3] E. Boeckx, J. T. Cho, -parallel contact metric spaces, Dierential geometry and its applications,
22 (2005), 275{285.
[4] D. E., Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics,
203. Birkh^auser Boston, Inc., Boston, MA, (2002).
[5] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math.,
Berlin-Heidelberg-New York, 792 (1980), 435{443.
[6] Kassabov, O. T. , Schur's theorem for almost Hermitian manifolds, C. R. Acad. Bulg. Sci.
(54) 3, 15-18, 2001.
[7] Cho, J. T. ,Geometry of contact strongly pseudo-convex CR-manifolds, J. Korean Math. (43)
5, 1019-1045, 2006.
[8] Kulkarni, R. S. , On a theorem of F. Schur, Journal Di. Geom. (4), 453-456, 1970.
[9] Gabriel, E. V. , A Schur-type Theorem on Indenite Quaternionic Keahler Manifolds, Int.
J. Contemp. Math. 11 (2), 529 - 536, 2007.
[10] Nobuhiro, I., A theorem of Schur type for locally symmetric spaces, Sci. Rep. Niigata Univ.,
Ser. A (25), 1-4,.1989.
[11] Schur, F. , Ueber den Zusammenhang der Raume constanten Riemann'schen Kriimmungs-
masses mit den projectiven Raumen. Math. (27), 537-567, 1886.
[12] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structures, Pacic J. Math.
(31), 373-382, 1969.
[13] Olszak, Z., On almost cosymplectic manfolds, Kodai Math. J. (4), 239-250, 1981.
[14] Olszak, Z., Almost cosymplectic manfolds with Kahlerian leaves, Tensor N. S. (46), 117-124,
1987.
[15] Kirichenko, V. F. , Almost cosymplectic manifolds satisfying the axiom of <Pholomorphic
planes (in Russian), Dokl. Akad. Nauk SSSR ( 273), 280-28,1983.
[16] Endo, H. , On Ricci curvatures of almost cosymplectic manifolds, An.
Stiinj:Univ:"Al:I:Cuza"Iaxi;Mat:(40); 75 83; 1994:
[17] Blair, D. E. , The theory of quasi-Sasakian structures, J. Di. Geometry, (1), 331-345, 1967.
[18] Dacko, P. and Olszak, Z., On conformally
at almost cosymplectic manifolds with Keahlerian
leaves, Rend. Sem. Mat. Univ. Pol. Torino, (56) 1, 89-103, 1998.
[19] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structure, Pacic J. Math.
(31) , 373{382, 1969
[20] Tanno, S. , The standard CR structure on the unit tangent bundle Tohoku Math. J. 44 (2),
535-543, 1992.
[21] Blair, D. E. , Contact metric manifolds satisfying a nullity condition Israel J.of Math. (91),
1-3, 189-214, 1995..
[22] Nesip Aktan, Gulhan Ayar and Imren Bektas, A Schur type theorem for almost cosymplectic
manifolds with Kaehlerian leaves, Hacettepe Journal of Mathematics and Statistics Volume
42 (4) (2013), 455 { 463
[23] H. Ozturk, Nesip Aktan, Cengizhan Murathan, Almost -Cosymplectic ( ; ; )-Spaces,
arXiv:1007.0527
[24] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Journal, 24 (1972),93{
103
Ayar, G., Yıldırım, M., & Aktan, N. (2016). A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp Journal of Mathematics, 4(1), 211-224.
AMA
Ayar G, Yıldırım M, Aktan N. A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp J. Math. April 2016;4(1):211-224.
Chicago
Ayar, Gülhan, Mustafa Yıldırım, and Nesip Aktan. “A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 211-24.
EndNote
Ayar G, Yıldırım M, Aktan N (April 1, 2016) A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp Journal of Mathematics 4 1 211–224.
IEEE
G. Ayar, M. Yıldırım, and N. Aktan, “A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”, Konuralp J. Math., vol. 4, no. 1, pp. 211–224, 2016.
ISNAD
Ayar, Gülhan et al. “A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”. Konuralp Journal of Mathematics 4/1 (April 2016), 211-224.
JAMA
Ayar G, Yıldırım M, Aktan N. A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp J. Math. 2016;4:211–224.
MLA
Ayar, Gülhan et al. “A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 211-24.
Vancouver
Ayar G, Yıldırım M, Aktan N. A SCHUR TYPE THEOREM FOR ALMOST COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp J. Math. 2016;4(1):211-24.