Research Article
BibTex RIS Cite

A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES

Year 2016, Volume: 4 Issue: 1, 211 - 224, 01.04.2016

Abstract

In this study, we give a Schur type theorem for almost 􀀀cosymplectic manifolds with Keahlerian leaves.

References

  • [1] T. W. Kim, H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sinica, Eng. Ser. Aug., 21, 4 (2005), 841{846.
  • [2] G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 343{354.
  • [3] E. Boeckx, J. T. Cho, -parallel contact metric spaces, Di erential geometry and its applications, 22 (2005), 275{285.
  • [4] D. E., Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkh^auser Boston, Inc., Boston, MA, (2002).
  • [5] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math., Berlin-Heidelberg-New York, 792 (1980), 435{443.
  • [6] Kassabov, O. T. , Schur's theorem for almost Hermitian manifolds, C. R. Acad. Bulg. Sci. (54) 3, 15-18, 2001.
  • [7] Cho, J. T. ,Geometry of contact strongly pseudo-convex CR-manifolds, J. Korean Math. (43) 5, 1019-1045, 2006.
  • [8] Kulkarni, R. S. , On a theorem of F. Schur, Journal Di . Geom. (4), 453-456, 1970.
  • [9] Gabriel, E. V. , A Schur-type Theorem on Inde nite Quaternionic Keahler Manifolds, Int. J. Contemp. Math. 11 (2), 529 - 536, 2007.
  • [10] Nobuhiro, I., A theorem of Schur type for locally symmetric spaces, Sci. Rep. Niigata Univ., Ser. A (25), 1-4,.1989.
  • [11] Schur, F. , Ueber den Zusammenhang der Raume constanten Riemann'schen Kriimmungs- masses mit den projectiven Raumen. Math. (27), 537-567, 1886.
  • [12] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structures, Paci c J. Math. (31), 373-382, 1969.
  • [13] Olszak, Z., On almost cosymplectic manfolds, Kodai Math. J. (4), 239-250, 1981.
  • [14] Olszak, Z., Almost cosymplectic manfolds with Kahlerian leaves, Tensor N. S. (46), 117-124, 1987.
  • [15] Kirichenko, V. F. , Almost cosymplectic manifolds satisfying the axiom of <Pholomorphic planes (in Russian), Dokl. Akad. Nauk SSSR ( 273), 280-28,1983.
  • [16] Endo, H. , On Ricci curvatures of almost cosymplectic manifolds, An. Stiinj:Univ:"Al:I:Cuza"Iaxi;Mat:(40); 75 􀀀 83; 1994:
  • [17] Blair, D. E. , The theory of quasi-Sasakian structures, J. Di . Geometry, (1), 331-345, 1967.
  • [18] Dacko, P. and Olszak, Z., On conformally at almost cosymplectic manifolds with Keahlerian leaves, Rend. Sem. Mat. Univ. Pol. Torino, (56) 1, 89-103, 1998.
  • [19] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structure, Paci c J. Math. (31) , 373{382, 1969
  • [20] Tanno, S. , The standard CR structure on the unit tangent bundle Tohoku Math. J. 44 (2), 535-543, 1992.
  • [21] Blair, D. E. , Contact metric manifolds satisfying a nullity condition Israel J.of Math. (91), 1-3, 189-214, 1995..
  • [22] Nesip Aktan, Gulhan Ayar and Imren Bektas, A Schur type theorem for almost cosymplectic manifolds with Kaehlerian leaves, Hacettepe Journal of Mathematics and Statistics Volume 42 (4) (2013), 455 { 463
  • [23] H.  Ozturk, Nesip Aktan, Cengizhan Murathan, Almost -Cosymplectic ( ; ; )-Spaces, arXiv:1007.0527
  • [24] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Journal, 24 (1972),93{ 103
Year 2016, Volume: 4 Issue: 1, 211 - 224, 01.04.2016

Abstract

References

  • [1] T. W. Kim, H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sinica, Eng. Ser. Aug., 21, 4 (2005), 841{846.
  • [2] G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 343{354.
  • [3] E. Boeckx, J. T. Cho, -parallel contact metric spaces, Di erential geometry and its applications, 22 (2005), 275{285.
  • [4] D. E., Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkh^auser Boston, Inc., Boston, MA, (2002).
  • [5] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math., Berlin-Heidelberg-New York, 792 (1980), 435{443.
  • [6] Kassabov, O. T. , Schur's theorem for almost Hermitian manifolds, C. R. Acad. Bulg. Sci. (54) 3, 15-18, 2001.
  • [7] Cho, J. T. ,Geometry of contact strongly pseudo-convex CR-manifolds, J. Korean Math. (43) 5, 1019-1045, 2006.
  • [8] Kulkarni, R. S. , On a theorem of F. Schur, Journal Di . Geom. (4), 453-456, 1970.
  • [9] Gabriel, E. V. , A Schur-type Theorem on Inde nite Quaternionic Keahler Manifolds, Int. J. Contemp. Math. 11 (2), 529 - 536, 2007.
  • [10] Nobuhiro, I., A theorem of Schur type for locally symmetric spaces, Sci. Rep. Niigata Univ., Ser. A (25), 1-4,.1989.
  • [11] Schur, F. , Ueber den Zusammenhang der Raume constanten Riemann'schen Kriimmungs- masses mit den projectiven Raumen. Math. (27), 537-567, 1886.
  • [12] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structures, Paci c J. Math. (31), 373-382, 1969.
  • [13] Olszak, Z., On almost cosymplectic manfolds, Kodai Math. J. (4), 239-250, 1981.
  • [14] Olszak, Z., Almost cosymplectic manfolds with Kahlerian leaves, Tensor N. S. (46), 117-124, 1987.
  • [15] Kirichenko, V. F. , Almost cosymplectic manifolds satisfying the axiom of <Pholomorphic planes (in Russian), Dokl. Akad. Nauk SSSR ( 273), 280-28,1983.
  • [16] Endo, H. , On Ricci curvatures of almost cosymplectic manifolds, An. Stiinj:Univ:"Al:I:Cuza"Iaxi;Mat:(40); 75 􀀀 83; 1994:
  • [17] Blair, D. E. , The theory of quasi-Sasakian structures, J. Di . Geometry, (1), 331-345, 1967.
  • [18] Dacko, P. and Olszak, Z., On conformally at almost cosymplectic manifolds with Keahlerian leaves, Rend. Sem. Mat. Univ. Pol. Torino, (56) 1, 89-103, 1998.
  • [19] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structure, Paci c J. Math. (31) , 373{382, 1969
  • [20] Tanno, S. , The standard CR structure on the unit tangent bundle Tohoku Math. J. 44 (2), 535-543, 1992.
  • [21] Blair, D. E. , Contact metric manifolds satisfying a nullity condition Israel J.of Math. (91), 1-3, 189-214, 1995..
  • [22] Nesip Aktan, Gulhan Ayar and Imren Bektas, A Schur type theorem for almost cosymplectic manifolds with Kaehlerian leaves, Hacettepe Journal of Mathematics and Statistics Volume 42 (4) (2013), 455 { 463
  • [23] H.  Ozturk, Nesip Aktan, Cengizhan Murathan, Almost -Cosymplectic ( ; ; )-Spaces, arXiv:1007.0527
  • [24] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Journal, 24 (1972),93{ 103
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gülhan Ayar

Mustafa Yıldırım

Nesip Aktan

Publication Date April 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Ayar, G., Yıldırım, M., & Aktan, N. (2016). A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp Journal of Mathematics, 4(1), 211-224.
AMA Ayar G, Yıldırım M, Aktan N. A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp J. Math. April 2016;4(1):211-224.
Chicago Ayar, Gülhan, Mustafa Yıldırım, and Nesip Aktan. “A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 211-24.
EndNote Ayar G, Yıldırım M, Aktan N (April 1, 2016) A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp Journal of Mathematics 4 1 211–224.
IEEE G. Ayar, M. Yıldırım, and N. Aktan, “A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”, Konuralp J. Math., vol. 4, no. 1, pp. 211–224, 2016.
ISNAD Ayar, Gülhan et al. “A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”. Konuralp Journal of Mathematics 4/1 (April 2016), 211-224.
JAMA Ayar G, Yıldırım M, Aktan N. A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp J. Math. 2016;4:211–224.
MLA Ayar, Gülhan et al. “A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 211-24.
Vancouver Ayar G, Yıldırım M, Aktan N. A SCHUR TYPE THEOREM FOR ALMOST 􀀀COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES. Konuralp J. Math. 2016;4(1):211-24.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.