Research Article
BibTex RIS Cite

A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS

Year 2017, Volume: 5 Issue: 2, 36 - 46, 15.10.2017

Abstract

In this article, we have introduced the $(p,q)-$Fibonacci and Lucas quaternion polynomials which are based on the $(p,q)-$Fibonacci and Lucas polynomials respectively. Some new identities are derived for these polynomials. The various results obtained here, include Binet formula, Catalan identity, binomial sum formula and generating function.

References

  • [1] J. Wang. Some New Results for the (p; q)-Fibonacci and Lucas Polynomials. Advances in Di erence Equations 2014, 2014: 64.
  • [2] G. Y. Lee and M. Asci, Some Properties of the (p; q)-Fibonacci and (p; q)-Lucas Polynomials. Journal of Applied Mathematics, Volume 2012, Article ID 264842, 18 pages doi:10.1155/2012/264842.
  • [3] G. B. Djordjevic, G.V. Milovanovic. Special Classes of Polynomials. University of Nis, Faculty of Technology, Leskovac, 2014.
  • [4] P. Catarino. The h(x)-Fibonacci Quaternion Polynomials:Some Combinatorial Properties. Adv. App Clifford Algebras 26(2016)71-79.
  • [5] A Tekcan, A. Özköc, M. Engür, M.E. Ozbek. On Algebraic Identities on a New Integer Sequence with Four Parameters. Ars Combinatoria. 127(2016) 225-238.
  • [6] A .Nalli, P. Haukkanen. On generalized Fibonacci and Lucas Polynomials. Chaos Solitons and Fractals 42(2009) 3179-3186.
  • [7] S. Halici. On Fibonacci Quaternions. Adv. Appl. Cli ord Algebras 22 (2012), 2, 321-327.
  • [8] P. Catarino. A Note on h(x)-Fibonacci Quaternion Polynomials. Chaos, Solitons and Fractals 77(2015)1-5.
  • [9] P. Ribenboim. My Numbers, My Friends, Popular Lectures on Number Theory. Springer Verlag, New York, Inc. 2000.
  • [10] J.P.Ward. Quaternions and Cayley Numbers. Kluwer Academic Publishers, Springer Science,1997.
Year 2017, Volume: 5 Issue: 2, 36 - 46, 15.10.2017

Abstract

References

  • [1] J. Wang. Some New Results for the (p; q)-Fibonacci and Lucas Polynomials. Advances in Di erence Equations 2014, 2014: 64.
  • [2] G. Y. Lee and M. Asci, Some Properties of the (p; q)-Fibonacci and (p; q)-Lucas Polynomials. Journal of Applied Mathematics, Volume 2012, Article ID 264842, 18 pages doi:10.1155/2012/264842.
  • [3] G. B. Djordjevic, G.V. Milovanovic. Special Classes of Polynomials. University of Nis, Faculty of Technology, Leskovac, 2014.
  • [4] P. Catarino. The h(x)-Fibonacci Quaternion Polynomials:Some Combinatorial Properties. Adv. App Clifford Algebras 26(2016)71-79.
  • [5] A Tekcan, A. Özköc, M. Engür, M.E. Ozbek. On Algebraic Identities on a New Integer Sequence with Four Parameters. Ars Combinatoria. 127(2016) 225-238.
  • [6] A .Nalli, P. Haukkanen. On generalized Fibonacci and Lucas Polynomials. Chaos Solitons and Fractals 42(2009) 3179-3186.
  • [7] S. Halici. On Fibonacci Quaternions. Adv. Appl. Cli ord Algebras 22 (2012), 2, 321-327.
  • [8] P. Catarino. A Note on h(x)-Fibonacci Quaternion Polynomials. Chaos, Solitons and Fractals 77(2015)1-5.
  • [9] P. Ribenboim. My Numbers, My Friends, Popular Lectures on Number Theory. Springer Verlag, New York, Inc. 2000.
  • [10] J.P.Ward. Quaternions and Cayley Numbers. Kluwer Academic Publishers, Springer Science,1997.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Arzu Özkoç

Ayhan Porsuk This is me

Publication Date October 15, 2017
Submission Date September 27, 2017
Acceptance Date October 6, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Özkoç, A., & Porsuk, A. (2017). A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS. Konuralp Journal of Mathematics, 5(2), 36-46.
AMA Özkoç A, Porsuk A. A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS. Konuralp J. Math. October 2017;5(2):36-46.
Chicago Özkoç, Arzu, and Ayhan Porsuk. “A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 36-46.
EndNote Özkoç A, Porsuk A (October 1, 2017) A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS. Konuralp Journal of Mathematics 5 2 36–46.
IEEE A. Özkoç and A. Porsuk, “A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS”, Konuralp J. Math., vol. 5, no. 2, pp. 36–46, 2017.
ISNAD Özkoç, Arzu - Porsuk, Ayhan. “A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS”. Konuralp Journal of Mathematics 5/2 (October 2017), 36-46.
JAMA Özkoç A, Porsuk A. A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS. Konuralp J. Math. 2017;5:36–46.
MLA Özkoç, Arzu and Ayhan Porsuk. “A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 36-46.
Vancouver Özkoç A, Porsuk A. A NOTE FOR THE $(p,q)-$FIBONACCI AND LUCAS QUATERNION POLYNOMIALS. Konuralp J. Math. 2017;5(2):36-4.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.