Research Article
BibTex RIS Cite

The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties

Year 2019, Volume: 7 Issue: 2, 292 - 299, 15.10.2019

Abstract

Various families of octonion number sequences (such as Fibonacci octonion, Pell octonion and Jacobsthal octonion) have been established by a number of authors in many different ways. In addition, formulas and identities involving these number sequences have been presented. In this paper, we aim to establishing new classes of octonion numbers associated with the generalized Tribonacci numbers. In this sense, we introduce the Tribonacci and generalized Tribonacci octonions (such as Narayana octonion, Padovan octonion and third-order Jacobsthal octonion) and give some of their properties. We derive the relations between generalized Tribonacci numbers and Tribonacci octonions.

References

  • [1] S.L. Adler, Quaternionic quantum mechanics and quantum fields, New York: Oxford University Press, 1994.
  • [2] I. Akkus and O. Kec¸ilioglu, Split Fibonacci and Lucas octonions, Adv. Appl. Clifford Algebras 25(3) (2015), 517–525.
  • [3] M. Akyigit, H.H. Kösal and M. Tosun, Split Fibonacci quaternions, Adv. Appl. Clifford Algebras 23 (2013), 535–545.
  • [4] J.C. Baez, The octonions, Bull. Am. Math. Soc. 39 (2002), 145–205.
  • [5] K. Carmody, Circular and Hyperbolic Quaternions, Octonions and Sedenions, Appl. Math. Comput. 28 (1988), 47–72.
  • [6] P. Catarino, The modified Pell and the modified k-Pell quaternions and octonions, Adv. Appl. Clifford Algebras 26 (2016), 577–590.
  • [7] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Advances in Applied Clifford Algebras 27(2) (2017), 1043–1053.
  • [8] G. Cerda-Morales, On a Generalization of Tribonacci Quaternions, Mediterranean Journal of Mathematics 14:239 (2017), 1–12.
  • [9] G. Cerda-Morales, On fourth-order jacobsthal quaternions, Journal of Mathematical Sciences and Modeling 1(2) (2018), 73–79.
  • [10] C.B. C¸ imen and A. ˙Ipek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford Algebras 26(1) (2016), 39–51.
  • [11] C.B. C¸ imen and A. ˙Ipek, On Jacobsthal and Jacobsthal-Lucas Octonions, Mediterranean Journal of Mathematics 14:37 (2017), 1–13.
  • [12] M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly 1(3) (1963), 71–74.
  • [13] W. Gerdes, Generalized Tribonacci numbers and their convergent sequences, The Fibonacci Quarterly 16(3) (1978), 269–275.
  • [14] M. Gogberashvili, Octonionic Geometry, Adv. Appl. Clifford Algebras 15 (2005), 55–66.
  • [15] M. Gogberashvili, Octonionic electrodynamics, J. Phys. A: Math. Gen. 39 (2006), 7099–7104.
  • [16] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras 22 (2012), 321–327.
  • [17] S. Halici, On complex Fibonacci quaternions, Adv. Appl. Clifford Algebras 23 (2013), 105–112.
  • [18] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Month. 70 (1963), 289–291.
  • [19] A. F. Horadam, Quaternion recurrence relations, Ulam Quarterly 2 (1993), 23–33 .
  • [20] M.R. Iyer, A note on Fibonacci quaternions, Fibonacci Quaterly 7(3) (1969), 225–229.
  • [21] O. Keçilioglu and I. Akkus, The Fibonacci Octonions, Adv. Appl. Clifford Algebras 25(1) (2015), 151–158.
  • [22] J. Koplinger, Signature of gravity in conic sedenions, Appl. Math. Computation 188 (2007), 942–947.
  • [23] J. Koplinger, Hypernumbers and relativity, Appl. Math. Computation 188 (2007), 954–969.
  • [24] A. Özkoc¸ and A. Porsuk, Some Remarks Regarding the (p;q)-Fibonacci and Lucas Octonion Polynomials, Universal Journal of Mathematics and Applications UJMA 1(1) (2018), 46–53.
  • [25] A. Özkoc¸, On Generalized Tribonacci Octonions, Sakarya University Journal of Science 23(5) (2019), 731–735.
  • [26] S. Pethe, Some identities for Tribonacci sequences, The Fibonacci Quarterly 26(2) (1988), 144–151.
  • [27] A.G. Shannon and A.F. Horadam, Some properties of third-order recurrence relations, The Fibonacci Quarterly 10(2) (1972), 135–146.
  • [28] A. Szynal-Liana and I. Włoch, A Note on Jacobsthal Quaternions, Adv. Appl. Clifford Algebras 26 (2016), 441–447.
  • [29] Y. Tian, Matrix representations of octonions and their applications, Adv. Appl. Clifford Algebras 10(1) (2000), 61–90.
  • [30] C.C. Yalavigi, Properties of Tribonacci numbers, The Fibonacci Quarterly 10(3), (1972), 231–246.
Year 2019, Volume: 7 Issue: 2, 292 - 299, 15.10.2019

Abstract

References

  • [1] S.L. Adler, Quaternionic quantum mechanics and quantum fields, New York: Oxford University Press, 1994.
  • [2] I. Akkus and O. Kec¸ilioglu, Split Fibonacci and Lucas octonions, Adv. Appl. Clifford Algebras 25(3) (2015), 517–525.
  • [3] M. Akyigit, H.H. Kösal and M. Tosun, Split Fibonacci quaternions, Adv. Appl. Clifford Algebras 23 (2013), 535–545.
  • [4] J.C. Baez, The octonions, Bull. Am. Math. Soc. 39 (2002), 145–205.
  • [5] K. Carmody, Circular and Hyperbolic Quaternions, Octonions and Sedenions, Appl. Math. Comput. 28 (1988), 47–72.
  • [6] P. Catarino, The modified Pell and the modified k-Pell quaternions and octonions, Adv. Appl. Clifford Algebras 26 (2016), 577–590.
  • [7] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Advances in Applied Clifford Algebras 27(2) (2017), 1043–1053.
  • [8] G. Cerda-Morales, On a Generalization of Tribonacci Quaternions, Mediterranean Journal of Mathematics 14:239 (2017), 1–12.
  • [9] G. Cerda-Morales, On fourth-order jacobsthal quaternions, Journal of Mathematical Sciences and Modeling 1(2) (2018), 73–79.
  • [10] C.B. C¸ imen and A. ˙Ipek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford Algebras 26(1) (2016), 39–51.
  • [11] C.B. C¸ imen and A. ˙Ipek, On Jacobsthal and Jacobsthal-Lucas Octonions, Mediterranean Journal of Mathematics 14:37 (2017), 1–13.
  • [12] M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly 1(3) (1963), 71–74.
  • [13] W. Gerdes, Generalized Tribonacci numbers and their convergent sequences, The Fibonacci Quarterly 16(3) (1978), 269–275.
  • [14] M. Gogberashvili, Octonionic Geometry, Adv. Appl. Clifford Algebras 15 (2005), 55–66.
  • [15] M. Gogberashvili, Octonionic electrodynamics, J. Phys. A: Math. Gen. 39 (2006), 7099–7104.
  • [16] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras 22 (2012), 321–327.
  • [17] S. Halici, On complex Fibonacci quaternions, Adv. Appl. Clifford Algebras 23 (2013), 105–112.
  • [18] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Month. 70 (1963), 289–291.
  • [19] A. F. Horadam, Quaternion recurrence relations, Ulam Quarterly 2 (1993), 23–33 .
  • [20] M.R. Iyer, A note on Fibonacci quaternions, Fibonacci Quaterly 7(3) (1969), 225–229.
  • [21] O. Keçilioglu and I. Akkus, The Fibonacci Octonions, Adv. Appl. Clifford Algebras 25(1) (2015), 151–158.
  • [22] J. Koplinger, Signature of gravity in conic sedenions, Appl. Math. Computation 188 (2007), 942–947.
  • [23] J. Koplinger, Hypernumbers and relativity, Appl. Math. Computation 188 (2007), 954–969.
  • [24] A. Özkoc¸ and A. Porsuk, Some Remarks Regarding the (p;q)-Fibonacci and Lucas Octonion Polynomials, Universal Journal of Mathematics and Applications UJMA 1(1) (2018), 46–53.
  • [25] A. Özkoc¸, On Generalized Tribonacci Octonions, Sakarya University Journal of Science 23(5) (2019), 731–735.
  • [26] S. Pethe, Some identities for Tribonacci sequences, The Fibonacci Quarterly 26(2) (1988), 144–151.
  • [27] A.G. Shannon and A.F. Horadam, Some properties of third-order recurrence relations, The Fibonacci Quarterly 10(2) (1972), 135–146.
  • [28] A. Szynal-Liana and I. Włoch, A Note on Jacobsthal Quaternions, Adv. Appl. Clifford Algebras 26 (2016), 441–447.
  • [29] Y. Tian, Matrix representations of octonions and their applications, Adv. Appl. Clifford Algebras 10(1) (2000), 61–90.
  • [30] C.C. Yalavigi, Properties of Tribonacci numbers, The Fibonacci Quarterly 10(3), (1972), 231–246.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gamaliel Cerda-morales

Publication Date October 15, 2019
Submission Date October 26, 2018
Acceptance Date June 18, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Cerda-morales, G. (2019). The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties. Konuralp Journal of Mathematics, 7(2), 292-299.
AMA Cerda-morales G. The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties. Konuralp J. Math. October 2019;7(2):292-299.
Chicago Cerda-morales, Gamaliel. “The Unifying Formula for All Tribonacci-Type Octonions Sequences and Their Properties”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 292-99.
EndNote Cerda-morales G (October 1, 2019) The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties. Konuralp Journal of Mathematics 7 2 292–299.
IEEE G. Cerda-morales, “The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties”, Konuralp J. Math., vol. 7, no. 2, pp. 292–299, 2019.
ISNAD Cerda-morales, Gamaliel. “The Unifying Formula for All Tribonacci-Type Octonions Sequences and Their Properties”. Konuralp Journal of Mathematics 7/2 (October 2019), 292-299.
JAMA Cerda-morales G. The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties. Konuralp J. Math. 2019;7:292–299.
MLA Cerda-morales, Gamaliel. “The Unifying Formula for All Tribonacci-Type Octonions Sequences and Their Properties”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 292-9.
Vancouver Cerda-morales G. The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties. Konuralp J. Math. 2019;7(2):292-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.