[1] S. Aslanci, S. Kazimova and A.A. Salimov, Some notes concerning Riemannian extensions, Ukrainian Math. J., 62 (2010), 661-675.
[2] A. Bonome, R. Castro, L. M. Hervella and Y. Matsushita, Construction of Norden structures on neutral 4-manifolds, JP J. Geom. Topol., 5 (2005),
121-140.
[3] S.L. Drut¸˘a, Classes of general natural almost anti-Hermitian structures on the cotangent bundles, Mediterranean J. Math, 8 (2011), 161-179.
[4] G.T. Ganchev and A.V. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulg. Sci.,39(1986), 31–34.
[5] M. Iscan, A.A. Salimov, On K¨ahler-Norden manifolds, Proc. Indian Acad. Sci. Math. Sci., 119(2009), 71-80.
[6] G.I. Kruckovic, Hypercomplex structures on manifolds.I, Trudy. Sem. Vektor. Tenzor. Anal., 16(1972), 174-201(in Russian).
[7] A. Salimov, Tensor Operators and Their Applications, Nova Science Publishers, New York, 2012.
[8] A.A. Salimov, M. Iscan and K. Akbulut, Some remarks concerning hyperholomorphic B-manifolds, Chin. Ann. Math., 29(2008), 631–640.
[9] A.A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl., 154(2007), 925-933.
[10] A.A. Salimov, S. Turanli, Curvature properties of anti-K¨ahler-Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I, 351(2013), 225–227.
[11] V.V. Vishnevskii, Integrable affinor structures and their plural interpretations, J. Math. Sci., 108(2002), 151-187.
[12] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Pure and Applied Mathematics, 16, Marcel Dekker, Inc., New York, 1973.
Some Properties of the Riemannian Extensions
Year 2019,
Volume: 7 Issue: 2, 359 - 362, 15.10.2019
In this article, we construct an almost complex structure on the cotangent bundle. Then we investigate Nordenian properties of the Riemannian extension in the cotangent bundle.
[1] S. Aslanci, S. Kazimova and A.A. Salimov, Some notes concerning Riemannian extensions, Ukrainian Math. J., 62 (2010), 661-675.
[2] A. Bonome, R. Castro, L. M. Hervella and Y. Matsushita, Construction of Norden structures on neutral 4-manifolds, JP J. Geom. Topol., 5 (2005),
121-140.
[3] S.L. Drut¸˘a, Classes of general natural almost anti-Hermitian structures on the cotangent bundles, Mediterranean J. Math, 8 (2011), 161-179.
[4] G.T. Ganchev and A.V. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulg. Sci.,39(1986), 31–34.
[5] M. Iscan, A.A. Salimov, On K¨ahler-Norden manifolds, Proc. Indian Acad. Sci. Math. Sci., 119(2009), 71-80.
[6] G.I. Kruckovic, Hypercomplex structures on manifolds.I, Trudy. Sem. Vektor. Tenzor. Anal., 16(1972), 174-201(in Russian).
[7] A. Salimov, Tensor Operators and Their Applications, Nova Science Publishers, New York, 2012.
[8] A.A. Salimov, M. Iscan and K. Akbulut, Some remarks concerning hyperholomorphic B-manifolds, Chin. Ann. Math., 29(2008), 631–640.
[9] A.A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl., 154(2007), 925-933.
[10] A.A. Salimov, S. Turanli, Curvature properties of anti-K¨ahler-Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I, 351(2013), 225–227.
[11] V.V. Vishnevskii, Integrable affinor structures and their plural interpretations, J. Math. Sci., 108(2002), 151-187.
[12] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Pure and Applied Mathematics, 16, Marcel Dekker, Inc., New York, 1973.