Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 363 - 370, 15.10.2019

Abstract

References

  • [1] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [2] G. Mittag-Leffler, Sur la repr´esentasion analytique des int´egrales et des invariants d’une ´equation diff´erentielle lin´eaire et homog´ene, Acta Math., 15 (1891), 1-32.
  • [3] H. Bateman, The polynomial of Mittag–Leffler, Proc N.A.S. 26 (1940), 491-496.
  • [4] H. Bateman, An orthogonal property of the hypergeometric polynomial, Proc N.A.S. 28 (1942), 374-377.
  • [5] M.S. Stankovi´c, S.D. Marinkovi´c, P.M. Rajkovi´c, Deformed exponential functions of two variables, ArXiv 1005.5040v1, May 27, 2010. http://arxiv.org/abs/1005.5040v1.
  • [6] S. Roman,The umbral calculus, Dover Publ. Inc. New York, 2005.
  • [7] T.X. He, L.C. Hsu, P.J.-S. Shiue, The Sheffer group and the Riordan group, Discrete Applied Mathematics 155 (2007), 1895-1909.
  • [8] A. Luzon, M.A. Moron, Recurrence relations for polynomial sequences via Riordan matrices, Linear Algebra and its Applications, 433 (2010), 1422-1446.
  • [9] N. Ozmen, E. Erkus-Duman, Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558(2013), 1124-1127.
  • [10] E. Erkus¸ and H.M. Srivastava, A unified presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [11] A. Altın, E. Erkus, On a multivariable extension of the Lagrange-Hermite polynomials. Integral Transform. and Spec. Funct. 17 (2006), 239-244.
  • [12] D. S. Kim, T. Kim, T. Mansour and J.-J. Seo, Degenerate Mittag-Leffler Polynomials, Applied Mathematics and Computation, 274 (2016), 258-266.

On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials

Year 2019, Volume: 7 Issue: 2, 363 - 370, 15.10.2019

Abstract

The present study deals with some new properties for the Mittag-Leffler polynomials and the deformed Mittag-Leffler polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties and also some special cases for these polynomials.

References

  • [1] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [2] G. Mittag-Leffler, Sur la repr´esentasion analytique des int´egrales et des invariants d’une ´equation diff´erentielle lin´eaire et homog´ene, Acta Math., 15 (1891), 1-32.
  • [3] H. Bateman, The polynomial of Mittag–Leffler, Proc N.A.S. 26 (1940), 491-496.
  • [4] H. Bateman, An orthogonal property of the hypergeometric polynomial, Proc N.A.S. 28 (1942), 374-377.
  • [5] M.S. Stankovi´c, S.D. Marinkovi´c, P.M. Rajkovi´c, Deformed exponential functions of two variables, ArXiv 1005.5040v1, May 27, 2010. http://arxiv.org/abs/1005.5040v1.
  • [6] S. Roman,The umbral calculus, Dover Publ. Inc. New York, 2005.
  • [7] T.X. He, L.C. Hsu, P.J.-S. Shiue, The Sheffer group and the Riordan group, Discrete Applied Mathematics 155 (2007), 1895-1909.
  • [8] A. Luzon, M.A. Moron, Recurrence relations for polynomial sequences via Riordan matrices, Linear Algebra and its Applications, 433 (2010), 1422-1446.
  • [9] N. Ozmen, E. Erkus-Duman, Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558(2013), 1124-1127.
  • [10] E. Erkus¸ and H.M. Srivastava, A unified presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [11] A. Altın, E. Erkus, On a multivariable extension of the Lagrange-Hermite polynomials. Integral Transform. and Spec. Funct. 17 (2006), 239-244.
  • [12] D. S. Kim, T. Kim, T. Mansour and J.-J. Seo, Degenerate Mittag-Leffler Polynomials, Applied Mathematics and Computation, 274 (2016), 258-266.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nejla Özmen

Nihal Yılmaz This is me

Publication Date October 15, 2019
Submission Date June 15, 2019
Acceptance Date July 18, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Özmen, N., & Yılmaz, N. (2019). On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials. Konuralp Journal of Mathematics, 7(2), 363-370.
AMA Özmen N, Yılmaz N. On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials. Konuralp J. Math. October 2019;7(2):363-370.
Chicago Özmen, Nejla, and Nihal Yılmaz. “On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 363-70.
EndNote Özmen N, Yılmaz N (October 1, 2019) On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials. Konuralp Journal of Mathematics 7 2 363–370.
IEEE N. Özmen and N. Yılmaz, “On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials”, Konuralp J. Math., vol. 7, no. 2, pp. 363–370, 2019.
ISNAD Özmen, Nejla - Yılmaz, Nihal. “On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials”. Konuralp Journal of Mathematics 7/2 (October 2019), 363-370.
JAMA Özmen N, Yılmaz N. On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials. Konuralp J. Math. 2019;7:363–370.
MLA Özmen, Nejla and Nihal Yılmaz. “On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 363-70.
Vancouver Özmen N, Yılmaz N. On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials. Konuralp J. Math. 2019;7(2):363-70.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.