Research Article
BibTex RIS Cite

On New Generalized Fractional Integral Operators and Related Fractional Inequalities

Year 2020, Volume: 8 Issue: 2, 268 - 278, 27.10.2020

Abstract

In this paper, we define the generalized $k$-fractional integrals of a function with respect to the another function which generalizes many different types of fractional integrals such as Riemann-Liouville fractional, Hadamard fractional integrals, Katugampola fractional integral, $(k,s)$-fractional integral operators. Moreover, we obtain Hermite-Hadamard inequalities utilizing $k$-fractional integrals of a function with respect to the another function. We also investigate trapezoid inequalities for the functions whose derivatives in absolute value are convex. Finally, some special cases of these inequalities are given.

References

  • [1] R. P. Agarwal, M.-J. Luo and R. K. Raina, On Ostrowski type inequalities, Fasciculi Mathematici, 204, De Gruyter, doi:10.1515/fascmath-2016-0001, 2016.
  • [2] A. Akkurt, M. E. Yıldırım, and H. Yıldırım, On some integral inequalities for (k;h)-Riemann-Liouville fractional integral, New Trends in Mathematical Science, 4 (2016), no. 2, 138–138.
  • [3] N. Alp, M.Z.Sarikaya, M. Kunt and İ. İşcan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University –Science, 30(2)(2018),193-203.
  • [4] H. Budak, F. Usta, M. Z. Sarikaya and M. E. Özdemir, On generalization of midpoint type inequalities with generalized fractional integral operators, RACSAM, 113 (2019), 769-790.
  • [5] H. Budak, F. Usta and M. Z. Sarikaya, Refinements of the Hermite–Hadamard iquality for co-ordinated convex mappings, Journal of Applied Analysis, 25 (2019), 73-81.
  • [6] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k symbol, Divulg.Math, 15 (2007), 179-192. [7] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • [8] F. Ertuğral, M.Z. Sarikaya and H. Budak, On Refinements of Hermite-Hadamard-Fejer type inequalities for fractional integral operators, Applications and Applied Mathematics: An International Journal, 13(1) (2018), 426-442.
  • [9] M. Jleli and B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl. 9 (2016), 1252-1260.
  • [10] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865, (2011).
  • [11] A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [12] S. Mubeen and G. M. Habibullah, k-Fractional integrals and applications, International Journal of Contemporary Mathematical Sciences, 7(2012), 89–94.
  • [13] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
  • [14] R.K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2) (2005), 191-203.
  • [15] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris and F. Ahmad, (k; s)-Riemann-Liouville fractional integral and applications, Hacettepe Journal of Mathematics and Statistics, 45(1) (2016), 77–89.
  • [16] M.Z. Sarikaya, E. Set, H. Yaldiz and N., Basak, Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, DOI:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.
  • [17] M. Z. Sarikaya, H. Budak and F. Usta, Some generalized integral inequalities via fractional integrals, Acta Math. Univ. Comenianae, LXXXIX(1) (2020), 27-38.
  • [18] T. Tunc¸ and M. Z. Sarikaya, On Hermite-Hadamard type inequalities via fractional integral operators, Filomat, 33(3), 837-854.
  • [19] F. Usta, H. Budak, M. Z. Sarikaya and E. Set, On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, 32(6) (2018), 2153-2171.
  • [20] H. Yaldiz and M. Z. Sarikaya, On Hermite-Hadamard type inequalities for fractional integral operators, ResearchGate Article, Available online at: https://www.researchgate.net/publication/309824275.
Year 2020, Volume: 8 Issue: 2, 268 - 278, 27.10.2020

Abstract

References

  • [1] R. P. Agarwal, M.-J. Luo and R. K. Raina, On Ostrowski type inequalities, Fasciculi Mathematici, 204, De Gruyter, doi:10.1515/fascmath-2016-0001, 2016.
  • [2] A. Akkurt, M. E. Yıldırım, and H. Yıldırım, On some integral inequalities for (k;h)-Riemann-Liouville fractional integral, New Trends in Mathematical Science, 4 (2016), no. 2, 138–138.
  • [3] N. Alp, M.Z.Sarikaya, M. Kunt and İ. İşcan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University –Science, 30(2)(2018),193-203.
  • [4] H. Budak, F. Usta, M. Z. Sarikaya and M. E. Özdemir, On generalization of midpoint type inequalities with generalized fractional integral operators, RACSAM, 113 (2019), 769-790.
  • [5] H. Budak, F. Usta and M. Z. Sarikaya, Refinements of the Hermite–Hadamard iquality for co-ordinated convex mappings, Journal of Applied Analysis, 25 (2019), 73-81.
  • [6] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k symbol, Divulg.Math, 15 (2007), 179-192. [7] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • [8] F. Ertuğral, M.Z. Sarikaya and H. Budak, On Refinements of Hermite-Hadamard-Fejer type inequalities for fractional integral operators, Applications and Applied Mathematics: An International Journal, 13(1) (2018), 426-442.
  • [9] M. Jleli and B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl. 9 (2016), 1252-1260.
  • [10] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865, (2011).
  • [11] A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [12] S. Mubeen and G. M. Habibullah, k-Fractional integrals and applications, International Journal of Contemporary Mathematical Sciences, 7(2012), 89–94.
  • [13] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
  • [14] R.K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2) (2005), 191-203.
  • [15] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris and F. Ahmad, (k; s)-Riemann-Liouville fractional integral and applications, Hacettepe Journal of Mathematics and Statistics, 45(1) (2016), 77–89.
  • [16] M.Z. Sarikaya, E. Set, H. Yaldiz and N., Basak, Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, DOI:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.
  • [17] M. Z. Sarikaya, H. Budak and F. Usta, Some generalized integral inequalities via fractional integrals, Acta Math. Univ. Comenianae, LXXXIX(1) (2020), 27-38.
  • [18] T. Tunc¸ and M. Z. Sarikaya, On Hermite-Hadamard type inequalities via fractional integral operators, Filomat, 33(3), 837-854.
  • [19] F. Usta, H. Budak, M. Z. Sarikaya and E. Set, On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, 32(6) (2018), 2153-2171.
  • [20] H. Yaldiz and M. Z. Sarikaya, On Hermite-Hadamard type inequalities for fractional integral operators, ResearchGate Article, Available online at: https://www.researchgate.net/publication/309824275.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tuba Tunç

Hüseyin Budak

Fuat Usta

Mehmet Zeki Sarıkaya

Publication Date October 27, 2020
Submission Date July 16, 2020
Acceptance Date October 13, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Tunç, T., Budak, H., Usta, F., Sarıkaya, M. Z. (2020). On New Generalized Fractional Integral Operators and Related Fractional Inequalities. Konuralp Journal of Mathematics, 8(2), 268-278.
AMA Tunç T, Budak H, Usta F, Sarıkaya MZ. On New Generalized Fractional Integral Operators and Related Fractional Inequalities. Konuralp J. Math. October 2020;8(2):268-278.
Chicago Tunç, Tuba, Hüseyin Budak, Fuat Usta, and Mehmet Zeki Sarıkaya. “On New Generalized Fractional Integral Operators and Related Fractional Inequalities”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 268-78.
EndNote Tunç T, Budak H, Usta F, Sarıkaya MZ (October 1, 2020) On New Generalized Fractional Integral Operators and Related Fractional Inequalities. Konuralp Journal of Mathematics 8 2 268–278.
IEEE T. Tunç, H. Budak, F. Usta, and M. Z. Sarıkaya, “On New Generalized Fractional Integral Operators and Related Fractional Inequalities”, Konuralp J. Math., vol. 8, no. 2, pp. 268–278, 2020.
ISNAD Tunç, Tuba et al. “On New Generalized Fractional Integral Operators and Related Fractional Inequalities”. Konuralp Journal of Mathematics 8/2 (October 2020), 268-278.
JAMA Tunç T, Budak H, Usta F, Sarıkaya MZ. On New Generalized Fractional Integral Operators and Related Fractional Inequalities. Konuralp J. Math. 2020;8:268–278.
MLA Tunç, Tuba et al. “On New Generalized Fractional Integral Operators and Related Fractional Inequalities”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 268-7.
Vancouver Tunç T, Budak H, Usta F, Sarıkaya MZ. On New Generalized Fractional Integral Operators and Related Fractional Inequalities. Konuralp J. Math. 2020;8(2):268-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.