Research Article
BibTex RIS Cite

Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation

Year 2020, Volume: 8 Issue: 2, 365 - 369, 27.10.2020

Abstract

This paper addresses the asymptotic behaviors of a linear Volterra type integro-differential equation. We study a singular Volterra integro equation in the limiting case of a small parameter with proper choices of the unknown functions in the equation. We show the effectiveness of the asymptotic perturbation expansions with an instructive model equation by the methods in superasymptotics. The methods used in this study are also valid to solve some other Volterra type integral equations including linear Volterra integro-differential equations, fractional integro-differential equations, and system of singular Volterra integral equations involving small (or large) parameters.

References

  • [1] J. P. Boyd, The devil’s invention: Asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math., Vol:56, No.1 (1999), 1-98.
  • [2] R. E. Meyer, Exponential asymptotics, SIAM Rev., Vol: 22, No. 2 (1980), 213-224.
  • [3] L. Piela, Ideas of quantum chemistry, Elsevier Science, 2006.
  • [4] F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., Vol: 384, (2021), 113198.
  • [5] M. V. Berry, R. Lim, Universal transition prefactors derived by superadiabatic renormalization, J. Phys. A, Vol: 26, No. 18 (1993), 4737 - 4747.
  • [6] I. Aniceto, G. Başar, R. Schiappa, A primer on resurgent transseries and their asymptotics, Phys. Rep., Vol: 809, (2019), 1 - 135.
  • [7] M. D. Kruskal, H. Segur, Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. Math., Vol:85, No.2 (1991), 129-181.
  • [8] J. Stirling, Methodus Differentialis, Springer, London, 1730.
  • [9] I. Tweddle, James Stirling's methodus differentialis, An annotated translation of Stirling's text, Sources and Studies in the History of Mathematics and Physical Sciences, Springer-Verlag London, Ltd., London, 2003.
  • [10] L. Euler, De solutione problematum diophanteorum per numeros integros, Comm. Acad. Sci. Imp. Petrop, Vol:6, (1738), 68-97.
  • [11] C. Maclaurin, A Treatise of Fluxions in Two Books, Ruddimans, Edinburgh, 1742.
  • [12] T. J. Stieltjes, Recherches sur quelques series semi-convergentes, Ann. Sci. Ecole Norm. Sup. 3, 201-58, 1886. Reprinted in Complete Works, Vol: 2, pp. 2-58, Groningen: Noordhoff, 1918.
  • [13] H. Poincar´e, Sur les integrales irregulieres, Acta Math., 8 (1) (1886), 295-344.
  • [14] R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, London-New York, 1973.
  • [15] M. V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, P. Roy. Soc. Lond. A Mat., 422 (1862) (1989), 7-21.
  • [16] M. V. Berry, Asymptotics, superasymptotics, hyperasymptotics, H. Segur, S. Tanveer, H. Levine (editors), Asymptotics Beyond All Orders, NATO Adv. Sci. Inst. Ser. B Phys., vol. 284, Springer Science & Business Media, Boston, 1991, 1-14.
  • [17] M. V. Berry, Stokes’ phenomenon; smoothing a Victorian discontinuity, Inst. Hautes Atudes Sci. Publ. Math. No. 68 (1988), 211-221.
  • [18] C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory, Reprint of the 1978 original, Springer-Verlag, New York, NY, 1999.
  • [19] B. L. J. Braaksma, G. K. Immink, M. Van der Put, J. Top (editors), Differential equations and the Stokes phenomenon, Proceedings of the workshop held at the University of Groningen, Groningen, May 28ˆaC“30, 2001, World Scientific Publishing Co., Inc., River Edge, NJ, 2002, doi:10.1142/5107.
  • [20] J. P. Boyd, A hyperasymptotic perturbative method for computing the radiation coefficient for weakly nonlocal solitary waves, J. Comput. Phys., Vol:120, No.1 (1995), 15-32.
  • [21] M. V. Berry, Stokes’s phenomenon for superfactorial asymptotic series, Proc. Roy. Soc. London Ser. A, Vol: 435, No.1894 (1991), 437 - 444.
  • [22] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, M. A. McClain (editors), NIST Digital Library of Mathematical Functions, Online companion to [31], http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15.
  • [23] L. A. Skinner, Asymptotic solution to a class of singularly perturbed Volterra integral equations, Methods Appl. Anal., Vol:2, No.2 (1995), 212-221.
  • [24] J. P. Kauthen, A survey of singularly perturbed Volterra equations, Appl. Numer. Math., Vol. 24, No. 2 - 3 (1997), 95 - 114.
  • [25] S. Mirza, D. O’Regan, N. Yasmin, A. Younus, Asymptotic properties for Volterra integro-dynamic systems, Electron. J. Qual. Theory Differ. Equ., Vol: 2015, No. 7 (2015), 1-14.
  • [26] F. Usta, M. Ilkhan, E. Evren Kara, Numerical solution of Volterra integral equations via Sz´asz-Mirakyan approximation method, Math. Methods Appl. Sci., In Press.
  • [27] J. S. Angell, W. E. Olmstead, Singularly perturbed Volterra integral equations, SIAM J. Appl. Math., Vol: 47, No. 1 (1987), 1 - 14.
  • [28] J. S. Angell, W. E. Olmstead, Singularly perturbed Volterra integral equations II, SIAM J. Appl. Math., Vol: 47, No. 6 (1987), 1150 - 1162.
  • [29] M. D. Kruskal, Asymptotology, in Mathematical Models in Physical Sciences (editors S. Drobot and P. A. Viebrock), Proceedings of the conference at the University of Notre Dame, 1962, (Prentice-Hall, Englewood Cliffs, NJ, 1963) 17-48.
  • [30] F. W. J. Olver, Asymtotics and Special Functions, Academic Press, London-New York, 1974.
  • [31] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (editors), NIST Handbook of Mathematical Functions, Print companion to [22], Cambridge University Press, New York, NY, 2010.
Year 2020, Volume: 8 Issue: 2, 365 - 369, 27.10.2020

Abstract

References

  • [1] J. P. Boyd, The devil’s invention: Asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math., Vol:56, No.1 (1999), 1-98.
  • [2] R. E. Meyer, Exponential asymptotics, SIAM Rev., Vol: 22, No. 2 (1980), 213-224.
  • [3] L. Piela, Ideas of quantum chemistry, Elsevier Science, 2006.
  • [4] F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., Vol: 384, (2021), 113198.
  • [5] M. V. Berry, R. Lim, Universal transition prefactors derived by superadiabatic renormalization, J. Phys. A, Vol: 26, No. 18 (1993), 4737 - 4747.
  • [6] I. Aniceto, G. Başar, R. Schiappa, A primer on resurgent transseries and their asymptotics, Phys. Rep., Vol: 809, (2019), 1 - 135.
  • [7] M. D. Kruskal, H. Segur, Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. Math., Vol:85, No.2 (1991), 129-181.
  • [8] J. Stirling, Methodus Differentialis, Springer, London, 1730.
  • [9] I. Tweddle, James Stirling's methodus differentialis, An annotated translation of Stirling's text, Sources and Studies in the History of Mathematics and Physical Sciences, Springer-Verlag London, Ltd., London, 2003.
  • [10] L. Euler, De solutione problematum diophanteorum per numeros integros, Comm. Acad. Sci. Imp. Petrop, Vol:6, (1738), 68-97.
  • [11] C. Maclaurin, A Treatise of Fluxions in Two Books, Ruddimans, Edinburgh, 1742.
  • [12] T. J. Stieltjes, Recherches sur quelques series semi-convergentes, Ann. Sci. Ecole Norm. Sup. 3, 201-58, 1886. Reprinted in Complete Works, Vol: 2, pp. 2-58, Groningen: Noordhoff, 1918.
  • [13] H. Poincar´e, Sur les integrales irregulieres, Acta Math., 8 (1) (1886), 295-344.
  • [14] R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, London-New York, 1973.
  • [15] M. V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, P. Roy. Soc. Lond. A Mat., 422 (1862) (1989), 7-21.
  • [16] M. V. Berry, Asymptotics, superasymptotics, hyperasymptotics, H. Segur, S. Tanveer, H. Levine (editors), Asymptotics Beyond All Orders, NATO Adv. Sci. Inst. Ser. B Phys., vol. 284, Springer Science & Business Media, Boston, 1991, 1-14.
  • [17] M. V. Berry, Stokes’ phenomenon; smoothing a Victorian discontinuity, Inst. Hautes Atudes Sci. Publ. Math. No. 68 (1988), 211-221.
  • [18] C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory, Reprint of the 1978 original, Springer-Verlag, New York, NY, 1999.
  • [19] B. L. J. Braaksma, G. K. Immink, M. Van der Put, J. Top (editors), Differential equations and the Stokes phenomenon, Proceedings of the workshop held at the University of Groningen, Groningen, May 28ˆaC“30, 2001, World Scientific Publishing Co., Inc., River Edge, NJ, 2002, doi:10.1142/5107.
  • [20] J. P. Boyd, A hyperasymptotic perturbative method for computing the radiation coefficient for weakly nonlocal solitary waves, J. Comput. Phys., Vol:120, No.1 (1995), 15-32.
  • [21] M. V. Berry, Stokes’s phenomenon for superfactorial asymptotic series, Proc. Roy. Soc. London Ser. A, Vol: 435, No.1894 (1991), 437 - 444.
  • [22] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, M. A. McClain (editors), NIST Digital Library of Mathematical Functions, Online companion to [31], http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15.
  • [23] L. A. Skinner, Asymptotic solution to a class of singularly perturbed Volterra integral equations, Methods Appl. Anal., Vol:2, No.2 (1995), 212-221.
  • [24] J. P. Kauthen, A survey of singularly perturbed Volterra equations, Appl. Numer. Math., Vol. 24, No. 2 - 3 (1997), 95 - 114.
  • [25] S. Mirza, D. O’Regan, N. Yasmin, A. Younus, Asymptotic properties for Volterra integro-dynamic systems, Electron. J. Qual. Theory Differ. Equ., Vol: 2015, No. 7 (2015), 1-14.
  • [26] F. Usta, M. Ilkhan, E. Evren Kara, Numerical solution of Volterra integral equations via Sz´asz-Mirakyan approximation method, Math. Methods Appl. Sci., In Press.
  • [27] J. S. Angell, W. E. Olmstead, Singularly perturbed Volterra integral equations, SIAM J. Appl. Math., Vol: 47, No. 1 (1987), 1 - 14.
  • [28] J. S. Angell, W. E. Olmstead, Singularly perturbed Volterra integral equations II, SIAM J. Appl. Math., Vol: 47, No. 6 (1987), 1150 - 1162.
  • [29] M. D. Kruskal, Asymptotology, in Mathematical Models in Physical Sciences (editors S. Drobot and P. A. Viebrock), Proceedings of the conference at the University of Notre Dame, 1962, (Prentice-Hall, Englewood Cliffs, NJ, 1963) 17-48.
  • [30] F. W. J. Olver, Asymtotics and Special Functions, Academic Press, London-New York, 1974.
  • [31] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (editors), NIST Handbook of Mathematical Functions, Print companion to [22], Cambridge University Press, New York, NY, 2010.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fatih Say 0000-0002-4500-2830

Publication Date October 27, 2020
Submission Date September 28, 2020
Acceptance Date October 19, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Say, F. (2020). Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation. Konuralp Journal of Mathematics, 8(2), 365-369.
AMA Say F. Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation. Konuralp J. Math. October 2020;8(2):365-369.
Chicago Say, Fatih. “Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 365-69.
EndNote Say F (October 1, 2020) Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation. Konuralp Journal of Mathematics 8 2 365–369.
IEEE F. Say, “Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation”, Konuralp J. Math., vol. 8, no. 2, pp. 365–369, 2020.
ISNAD Say, Fatih. “Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation”. Konuralp Journal of Mathematics 8/2 (October 2020), 365-369.
JAMA Say F. Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation. Konuralp J. Math. 2020;8:365–369.
MLA Say, Fatih. “Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 365-9.
Vancouver Say F. Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation. Konuralp J. Math. 2020;8(2):365-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.