Research Article
BibTex RIS Cite
Year 2021, Volume: 9 Issue: 1, 209 - 216, 28.04.2021

Abstract

References

  • [1] M. Arslan and E. Dundar,¨ On Rough Convergence in 2-Normed Spaces and Some Properties, Filomat 33(6) (2019), 5077-5086.
  • [2] C. Aydın and F. Bas¸ar, Some new difference sequence spaces, Appl. Math.Comput. 157(3) (2004); 677-693.
  • [3] S. Aytar, The Rough Limit Set and the Core of a Real Sequence, Numer. Func. Anal. Optimiz. 29(3) (2008); 283-290.
  • [4] M. Başarır, On the D statistical convergence of sequences, Firat Uni., Jour. of Science and Engineering 7(2) (1995); 1-6.
  • [5] C.A. Bektas¸, M. Et and R. C¸olak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2004); 423-432.
  • [6] N. Demir, Rough convergence and rough statistical convergence of difference sequences, Master Thesis in Necmettin Erbakan University, Institue of Natural and Applied Sciences, June 2019.
  • [7] N. Demir and H. Gumus, Rough convergence for difference sequences, New Trends in Math.Sciences 8(2) (2020); 22-28.
  • [8] N. Demir and H. Gumus, Rough statistical convergence for difference sequences, Kragujevac Journal of Mathematics 46(5) (2022), 733-742.
  • [9] E. Dundar and C. Cakan, Rough I convergence, Demonstratio Mathematica 47(3) (2014), 638-651.
  • [10] P. Erdos and G. Tenenbaum, Sur les densites de certaines suites d’entiers, Proceedings of the London Math. Soc. 59(3) (1989), 417-438.
  • [11] M. Et, On some difference sequence spaces, Doga˘-Tr. J.of Mathematics 17 (1993); 18-24.
  • [12] M. Et and R. C¸olak, On some generalized difference sequence spaces, Soochow Journal Of Mathematics 21(4) (1995); 377-386.
  • [13] M. Et and M. Bas¸arır, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35(3) (1997), 169-175.
  • [14] M. Et. and A. Es¸i, On Kothe¨- Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc. 23 (2000), 25-32.
  • [15] M. Et and F. Nuray, Dm Statistical convergence, Indian J.Pure Appl. Math. 32(6) (2001), 961-969.
  • [16] H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951); 241-244.
  • [17] A. R. Freedman, J. Sember and M. Raphael, Some Cesaro`-type summability spaces, Proc. London Math. Soc. (3) 37 no. 3 (1978); 508–520.
  • [18] H. Gumus, I convergence and asymptotic I equivalence of difference sequences, Phd Thesis in Afyon Kocatepe University, Institue of Natural and Applied Sciences, May 2011.
  • [19] H. Gumus¸ and F. Nuray, Dm Ideal Convergence, Selc¸uk J. Appl. Math. 12(2) (2011), 101-110.
  • [20] O. Kisi and H. K. Unal, Rough DI2 statistical convergence of double difference sequences in normed linear spaces, Bull. Math. Anal. Appl. 12 (1) (2020); 1-11.
  • [21] O. Kisi and H. K. Unal, Rough Statistical Convergence of Double Sequences in Normed Linear Spaces, Honam Math. J., in press.
  • [22] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981); 169-176.(2000); 669-680.
  • [23] P. Kostyrko, T. Salat,´ W. Wilezynski,´ I Convergence, Real Analysis Exchange, Vol. 26(2)
  • [24] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. of the Amer. Math. Soc. 347(5) (1995); 1811-1819.
  • [25] S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacettepe Journal of Mathematics and Statistics, Vol 42 (6) (2013); 633-640.
  • [26] H. X. Phu, Rough convergence in normed lineer spaces, Numer. Funct. Anal. Optmiz., Vol. 22 (2001); 199-222.
  • [27] H. X. Phu, Rough Convergence infinite dimensional normed spaces, Numerical Functional Analysis and Optimization, Vol.24 (2003); 285-301.
  • [28] E. Savas¸¸Dm strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Applied Mathematics and Computation 217(1) (2010), 271–276.
  • [29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Athematicum 2 (1951); 73-74.
  • [30] A. Zygmund, Trigonometric Series, Cam. Uni. Press, Cambridge, UK., (1979).

Rough $\Delta \mathcal{I}-$Convergence

Year 2021, Volume: 9 Issue: 1, 209 - 216, 28.04.2021

Abstract

In this paper, we study the concept of rough $\mathcal{I}-$convergence for difference sequences in $\left( \mathbb{R}^{n},\left\Vert .\right\Vert \right) $ where $ \mathbb{R}^{n}$ denotes the real $n-$dimensional space with the norm $\left\Vert .\right\Vert $. At the same time, we examine some basic properties of the set $\mathcal{I}-\lim_{\Delta x_{I}}^{r}=\lbrace x_{\ast}\in\mathbb{R}^{n}:\Delta x_{i}\overset{r}{\rightarrow}x_{\ast}\rbrace $ which is called as $r$-$\mathcal{I-}$ limit set of the difference sequence $\left( \Delta x_{i}\right) $ and we give some properties of $\mathcal{I}-\lim \inf \Delta x_{i},$ $\mathcal{I}-\lim \sup \Delta x_{i}$ and $\mathcal{I}-$core$\left\{ \Delta x_{i}\right\} .$

References

  • [1] M. Arslan and E. Dundar,¨ On Rough Convergence in 2-Normed Spaces and Some Properties, Filomat 33(6) (2019), 5077-5086.
  • [2] C. Aydın and F. Bas¸ar, Some new difference sequence spaces, Appl. Math.Comput. 157(3) (2004); 677-693.
  • [3] S. Aytar, The Rough Limit Set and the Core of a Real Sequence, Numer. Func. Anal. Optimiz. 29(3) (2008); 283-290.
  • [4] M. Başarır, On the D statistical convergence of sequences, Firat Uni., Jour. of Science and Engineering 7(2) (1995); 1-6.
  • [5] C.A. Bektas¸, M. Et and R. C¸olak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2004); 423-432.
  • [6] N. Demir, Rough convergence and rough statistical convergence of difference sequences, Master Thesis in Necmettin Erbakan University, Institue of Natural and Applied Sciences, June 2019.
  • [7] N. Demir and H. Gumus, Rough convergence for difference sequences, New Trends in Math.Sciences 8(2) (2020); 22-28.
  • [8] N. Demir and H. Gumus, Rough statistical convergence for difference sequences, Kragujevac Journal of Mathematics 46(5) (2022), 733-742.
  • [9] E. Dundar and C. Cakan, Rough I convergence, Demonstratio Mathematica 47(3) (2014), 638-651.
  • [10] P. Erdos and G. Tenenbaum, Sur les densites de certaines suites d’entiers, Proceedings of the London Math. Soc. 59(3) (1989), 417-438.
  • [11] M. Et, On some difference sequence spaces, Doga˘-Tr. J.of Mathematics 17 (1993); 18-24.
  • [12] M. Et and R. C¸olak, On some generalized difference sequence spaces, Soochow Journal Of Mathematics 21(4) (1995); 377-386.
  • [13] M. Et and M. Bas¸arır, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35(3) (1997), 169-175.
  • [14] M. Et. and A. Es¸i, On Kothe¨- Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc. 23 (2000), 25-32.
  • [15] M. Et and F. Nuray, Dm Statistical convergence, Indian J.Pure Appl. Math. 32(6) (2001), 961-969.
  • [16] H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951); 241-244.
  • [17] A. R. Freedman, J. Sember and M. Raphael, Some Cesaro`-type summability spaces, Proc. London Math. Soc. (3) 37 no. 3 (1978); 508–520.
  • [18] H. Gumus, I convergence and asymptotic I equivalence of difference sequences, Phd Thesis in Afyon Kocatepe University, Institue of Natural and Applied Sciences, May 2011.
  • [19] H. Gumus¸ and F. Nuray, Dm Ideal Convergence, Selc¸uk J. Appl. Math. 12(2) (2011), 101-110.
  • [20] O. Kisi and H. K. Unal, Rough DI2 statistical convergence of double difference sequences in normed linear spaces, Bull. Math. Anal. Appl. 12 (1) (2020); 1-11.
  • [21] O. Kisi and H. K. Unal, Rough Statistical Convergence of Double Sequences in Normed Linear Spaces, Honam Math. J., in press.
  • [22] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981); 169-176.(2000); 669-680.
  • [23] P. Kostyrko, T. Salat,´ W. Wilezynski,´ I Convergence, Real Analysis Exchange, Vol. 26(2)
  • [24] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. of the Amer. Math. Soc. 347(5) (1995); 1811-1819.
  • [25] S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacettepe Journal of Mathematics and Statistics, Vol 42 (6) (2013); 633-640.
  • [26] H. X. Phu, Rough convergence in normed lineer spaces, Numer. Funct. Anal. Optmiz., Vol. 22 (2001); 199-222.
  • [27] H. X. Phu, Rough Convergence infinite dimensional normed spaces, Numerical Functional Analysis and Optimization, Vol.24 (2003); 285-301.
  • [28] E. Savas¸¸Dm strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Applied Mathematics and Computation 217(1) (2010), 271–276.
  • [29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Athematicum 2 (1951); 73-74.
  • [30] A. Zygmund, Trigonometric Series, Cam. Uni. Press, Cambridge, UK., (1979).
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hafize Gumus 0000-0001-8972-5961

Nihal Demir This is me

Publication Date April 28, 2021
Submission Date November 12, 2020
Acceptance Date February 20, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Gumus, H., & Demir, N. (2021). Rough $\Delta \mathcal{I}-$Convergence. Konuralp Journal of Mathematics, 9(1), 209-216.
AMA Gumus H, Demir N. Rough $\Delta \mathcal{I}-$Convergence. Konuralp J. Math. April 2021;9(1):209-216.
Chicago Gumus, Hafize, and Nihal Demir. “Rough $\Delta \mathcal{I}-$Convergence”. Konuralp Journal of Mathematics 9, no. 1 (April 2021): 209-16.
EndNote Gumus H, Demir N (April 1, 2021) Rough $\Delta \mathcal{I}-$Convergence. Konuralp Journal of Mathematics 9 1 209–216.
IEEE H. Gumus and N. Demir, “Rough $\Delta \mathcal{I}-$Convergence”, Konuralp J. Math., vol. 9, no. 1, pp. 209–216, 2021.
ISNAD Gumus, Hafize - Demir, Nihal. “Rough $\Delta \mathcal{I}-$Convergence”. Konuralp Journal of Mathematics 9/1 (April 2021), 209-216.
JAMA Gumus H, Demir N. Rough $\Delta \mathcal{I}-$Convergence. Konuralp J. Math. 2021;9:209–216.
MLA Gumus, Hafize and Nihal Demir. “Rough $\Delta \mathcal{I}-$Convergence”. Konuralp Journal of Mathematics, vol. 9, no. 1, 2021, pp. 209-16.
Vancouver Gumus H, Demir N. Rough $\Delta \mathcal{I}-$Convergence. Konuralp J. Math. 2021;9(1):209-16.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.